Introduction to Ergodic Theory of Chaotic Billards

[1]  D. Ornstein,et al.  On the Bernoulli nature of systems with some hyperbolic structure , 1998, Ergodic Theory and Dynamical Systems.

[2]  S. Tabachnikov Exact Transverse Line Fields and Projective Billiards in a Ball , 1997 .

[3]  V. Donnay Elliptic islands in generalized Sinai billiards , 1996, Ergodic Theory and Dynamical Systems.

[4]  Nn Andor,et al.  Ergodicity of Hard Spheres in a Box , 1997 .

[5]  R. Bowen Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms , 1975 .

[6]  N. Chernov Statistical properties of the periodic Lorentz gas. Multidimensional case , 1994 .

[7]  Hard ball systems are completely hyperbolic , 1997, math/9704229.

[8]  J. Wisdom,et al.  The Benettin-Strelcyn oval billiard revisited , 1983 .

[9]  ON A FUNDAMENTAL THEOREM IN THE THEORY OF DISPERSING BILLIARDS , 1973 .

[10]  T. Morita On the Length Spectrum of the Bounded Scattering Billiards Table , 1995 .

[11]  N. Chernov,et al.  Entropy, Lyapunov exponents, and mean free path for billiards , 1997 .

[12]  H. A. Lorentz The motion of electrons in metallic bodies I , 1904 .

[13]  Sylvie Oliffson Kamphorst,et al.  Bounded gain of energy on the breathing circle billiard , 1998, chao-dyn/9811023.

[14]  Statistical Mechanics: A Selective Review of Two Central Issues , 1999, math-ph/0010018.

[15]  L. Santaló Integral geometry and geometric probability , 1976 .

[16]  D. Ornstein Bernoulli shifts with the same entropy are isomorphic , 1970 .

[17]  Anatole Katok,et al.  Invariant Manifolds, Entropy and Billiards: Smooth Maps With Singularities , 1986 .

[18]  Domokos Szász,et al.  The Erwin Schrr Odinger International Institute for Mathematical Physics Boltzmann's Ergodic Hypothesis, a Conjecture for Centuries? , 2022 .

[19]  D. S. Broomhead,et al.  The dynamics of billiards with no-slip collisions , 1993 .

[20]  J. Machta Power law decay of correlations in a billiard problem , 1983 .

[21]  S. Tabachnikov Introducing projective billiards , 1997, Ergodic Theory and Dynamical Systems.

[22]  M. Lenci Escape orbits for non-compact flat billiards. , 1996, Chaos.

[23]  S. O. Kamphorst,et al.  Chaotic properties of the elliptical stadium , 1995, chao-dyn/9501004.

[24]  R. Markarian New ergodic billiards: exact results , 1993 .

[25]  Maciej P. Wojtkowski,et al.  Principles for the design of billiards with nonvanishing Lyapunov exponents , 1986, Hamiltonian Dynamical Systems.

[26]  Nikolai SergeevichHG Krylov,et al.  Works on the foundations of statistical physics , 1979 .

[27]  Billiards and Conditionally Invariant Probabilities , 1994 .

[28]  L. Stojanov An estimate from above of the number of periodic orbits for semi-dispersed billiards , 1989 .

[29]  W. W. Wood,et al.  Molecular-dynamics calculations of the velocity-autocorrelation function. Methods, hard-disk results , 1982 .

[30]  L. Stoyanov Instability and entropy for a class of dispersing billiards , 1998 .

[31]  E. Cohen,et al.  Dynamical ensembles in stationary states , 1995, chao-dyn/9501015.

[32]  Jonathan L. F. King,et al.  Billiards inside a cusp , 1995 .

[33]  N. Chernov,et al.  Entropy of non-uniformly hyperbolic plane billiards , 1992 .

[34]  D. Burago,et al.  Topological entropy of semi-dispersing billiards , 1998, Ergodic Theory and Dynamical Systems.

[35]  J. Zukas Introduction to the Modern Theory of Dynamical Systems , 1998 .

[36]  L. Pustyl'nikov Existence of Invariant Curves for Maps Close to Degenerate Maps, and a Solution of the Fermi-Ulam Problem , 1995 .

[37]  Dmitry Burago,et al.  Uniform estimates on the number of collisions in semi-dispersing billiards , 1998 .

[38]  C. Boldrighini,et al.  Billiards in Polygons , 1978 .

[39]  G. Benettin,et al.  Numerical experiments on the free motion of a point mass moving in a plane convex region: Stochastic transition and entropy , 1978 .

[40]  S. O. Kamphorst,et al.  Time-dependent billiards , 1995 .

[41]  Maciej P. Wojtkowski,et al.  Invariant families of cones and Lyapunov exponents , 1985, Ergodic Theory and Dynamical Systems.

[42]  Y. Pesin CHARACTERISTIC LYAPUNOV EXPONENTS AND SMOOTH ERGODIC THEORY , 1977 .

[43]  David Ruelle,et al.  A MEASURE ASSOCIATED WITH AXIOM-A ATTRACTORS. , 1976 .

[44]  Maciej P. Wojtkowski,et al.  Measure theoretic entropy of the system of hard spheres , 1988, Ergodic Theory and Dynamical Systems.

[45]  N. Chernov,et al.  Nonuniformly hyperbolic K-systems are Bernoulli , 1996, Ergodic Theory and Dynamical Systems.

[46]  V. Baladi Positive transfer operators and decay of correlations , 2000 .

[47]  Maciej P. Wojtkowski,et al.  A system of one dimensional balls with gravity , 1990 .

[48]  D. Anosov,et al.  Ergodic Properties of Geodesic Flows on Closed Riemannian Manifolds of Negative Curvature , 2020 .

[49]  E. H. Hauge What can one learn from Lorentz models , 1974 .

[50]  Takehiko Morita,et al.  The symbolic representation of billiards without boundary condition , 1991 .

[51]  N. Chernov Statistical properties of piecewise smooth hyperbolic systems in high dimensions , 1999 .

[52]  L. A. Bunimovic ON BILLIARDS CLOSE TO DISPERSING , 1974 .

[53]  L. Young Recurrence times and rates of mixing , 1999 .

[54]  B. Halpern,et al.  Strange billiard tables , 1977 .

[55]  Leonid A. Bunimovich,et al.  Statistical properties of lorentz gas with periodic configuration of scatterers , 1981 .

[56]  Leonid A. Bunimovich,et al.  Statistical properties of two-dimensional hyperbolic billiards , 1991 .

[57]  L. Bunimovich,et al.  Conditions of stochasticity of two-dimensional billiards. , 1991, Chaos.

[58]  Jan Rehacek,et al.  Nowhere Dispersing 3D Billiards with Non-vanishing Lyapunov Exponents , 1997 .

[59]  Experiences numeriques sur des billards C1 formes de quatre arcs de cercles , 1986 .

[60]  L. Stojanov NOTE ON THE PERIODIC POINTS OF THE BILLIARD , 1991 .

[61]  Escape orbits and ergodicity in infinite step billiards , 1999, chao-dyn/9906017.

[62]  Y. Sinai,et al.  Entropy of a gas of hard spheres with respect to the group of space-time translations , 1986 .

[63]  D. Szász,et al.  Ergodic properties of semi-dispersing billiards. I. Two cylindric scatterers in the 3D torus , 1989 .

[64]  Measures with infinite Lyapunov exponents for the periodic Lorentz gas , 1994, math/9411237.

[65]  V. V. Kozlov,et al.  Billiards: A Genetic Introduction to the Dynamics of Systems with Impacts , 1991 .

[66]  H. Poincaré,et al.  Les méthodes nouvelles de la mécanique céleste , 1899 .

[67]  Victor J. Donnay,et al.  Using integrability to produce chaos: Billiards with positive entropy , 1991 .

[68]  D. Szász,et al.  The K-property of three billiard balls , 1991 .

[69]  L. Bunimovich On absolutely focusing mirrors , 1992 .

[70]  R. Alexander Time evolution for infinitely many hard spheres , 1976 .

[71]  Andrea Hubacher Instability of the boundary in the billiard ball problem , 1987 .

[72]  D. Burago,et al.  A Geometric Approach to Semi-Dispersing Billiards , 2000 .

[73]  V. Petkov,et al.  On the number of periodic reflecting rays in generic domains , 1988, Ergodic Theory and Dynamical Systems.

[74]  A. Katok,et al.  Caustics for inner and outer billiards , 1995 .

[75]  M. Wojtkowski Two applications of Jacobi fields to the billiard ball problem , 1994 .

[76]  L. Bunimovich A theorem on ergodicity of two-dimensional hyperbolic billiards , 1990 .

[77]  Latchezar Stoyanov,et al.  Exponential instability for a class of dispersing billiards , 1999, Ergodic Theory and Dynamical Systems.

[78]  Giulio Casati,et al.  Origin of Long-Time Tails in Strongly Chaotic Systems , 1983 .

[79]  Ja B Pesin FAMILIES OF INVARIANT MANIFOLDS CORRESPONDING TO NONZERO CHARACTERISTIC EXPONENTS , 1976 .

[80]  L. Vaserstein On systems of particles with finite-range and/or repulsive interactions , 1979 .

[81]  L. Bunimovich On the ergodic properties of nowhere dispersing billiards , 1979 .

[82]  B. Gutkin,et al.  Hyperbolic Billiards on Surfaces of Constant Curvature , 1999, chao-dyn/9905030.

[83]  Y. Sinai,et al.  SOME SMOOTH ERGODIC SYSTEMS , 1967 .

[84]  N. Chernov Decay of Correlations and Dispersing Billiards , 1999 .

[85]  J. Lewowicz,et al.  Analytic models of pseudo-Anosov maps , 1986, Ergodic Theory and Dynamical Systems.

[86]  N. Chernov,et al.  Decay of correlations for Lorentz gases and hard balls , 2000 .

[87]  Jonathan L. King,et al.  Three Problems in Search of a Measure , 1994 .

[88]  Marek Rychlik Periodic points of the billiard ball map in a convex domain , 1989 .

[89]  Marko Robnik,et al.  Classical dynamics of a family of billiards with analytic boundaries , 1983 .

[90]  How High-Dimensional Stadia Look Like , 1998 .

[91]  Roberto Peirone Billiards in Tubular Neighborhoods of Manifolds¶of Codimension 1 , 1999 .

[92]  R. Markarian Billiards with Pesin region of measure one , 1988 .

[93]  N. Chernov,et al.  ERGODICITY OF BILLIARDS IN POLYGONS WITH POCKETS , 1998 .

[94]  V. Donnay Non-ergodicity of Two Particles Interacting via a Smooth Potential , 1999 .

[95]  E. Gutkin Billiards in polygons: Survey of recent results , 1996 .

[96]  L. Bunimovich Many-dimensional nowhere dispersing billiards with chaotic behavior , 1988 .

[97]  Jair Koiller,et al.  Static and time-dependent perturbations of the classical elliptical billiard , 1996 .

[98]  J. Lebowitz Microscopic origins of irreversible macroscopic behavior , 1999 .

[99]  Y. Sinai,et al.  BILLIARD TRAJECTORIES IN A POLYHEDRAL ANGLE , 1978 .

[100]  J. Lebowitz,et al.  Hard Ball Systems and the Lorentz Gas , 2000 .

[101]  N. Chernov Topological entropy and periodic points of two-dimensional hyperbolic billiards , 1991 .

[102]  Steven P. Kerckhoff,et al.  Ergodicity of billiard flows and quadratic differentials , 1986 .

[103]  Maciej P. Wojtkowski,et al.  The system of one dimensional balls in an external field. II , 1990 .

[104]  L. Bunimovich,et al.  Ergodic systems ofn balls in a billiard table , 1992 .

[105]  L. Young,et al.  STATISTICAL PROPERTIES OF DYNAMICAL SYSTEMS WITH SOME HYPERBOLICITY , 1998 .

[106]  A. Katok Lyapunov exponents, entropy and periodic orbits for diffeomorphisms , 1980 .

[107]  L. Bunimovich,et al.  Markov Partitions for dispersed billiards , 1980 .

[108]  G. Benettin Power-law behavior of Lyapunov exponents in some conservative dynamical systems , 1984 .

[109]  M. Wojtkowski,et al.  Two-particle billiard system with arbitrary mass ratio , 1989, Ergodic Theory and Dynamical Systems.

[110]  Generic properties of periodic reflecting rays , 1987, Ergodic Theory and Dynamical Systems.

[111]  R. Markarian Non-uniformly hyperbolic billiards , 1994 .

[112]  J. Machta,et al.  Decay of correlations in the regular Lorentz gas , 1986 .

[113]  P. Gaspard,et al.  Chaotic scattering theory, thermodynamic formalism, and transport coefficients. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[114]  R. Markarian Statistical properties of dynamical systems with singularities , 1995 .

[115]  Y. Sinai GIBBS MEASURES IN ERGODIC THEORY , 1972 .

[116]  M. Wojtkowski Linearly stable orbits in 3 dimensional billiards , 1990 .

[117]  N. Chernov,et al.  Limit theorems and Markov approximations for chaotic dynamical systems , 1995 .

[118]  R. Bowen Invariant measures for Markov maps of the interval , 1979 .

[119]  Gianluigi Del Magno,et al.  An infinite step billiard , 1997, chao-dyn/9709006.

[120]  C. Liverani,et al.  Potentials on the two-torus for which the Hamiltonian flow is ergodic , 1991 .

[121]  Jean-Philippe Bouchaud,et al.  Numerical study of aD-dimensional periodic Lorentz gas with universal properties , 1985 .

[122]  D. Szász,et al.  Non-integrability of cylindric billiards and transitive Lie group actions , 2000, Ergodic Theory and Dynamical Systems.

[123]  D. Szász,et al.  TheK-property of four billiard balls , 1992 .