Introduction to Ergodic Theory of Chaotic Billards
暂无分享,去创建一个
[1] D. Ornstein,et al. On the Bernoulli nature of systems with some hyperbolic structure , 1998, Ergodic Theory and Dynamical Systems.
[2] S. Tabachnikov. Exact Transverse Line Fields and Projective Billiards in a Ball , 1997 .
[3] V. Donnay. Elliptic islands in generalized Sinai billiards , 1996, Ergodic Theory and Dynamical Systems.
[4] Nn Andor,et al. Ergodicity of Hard Spheres in a Box , 1997 .
[5] R. Bowen. Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms , 1975 .
[6] N. Chernov. Statistical properties of the periodic Lorentz gas. Multidimensional case , 1994 .
[7] Hard ball systems are completely hyperbolic , 1997, math/9704229.
[8] J. Wisdom,et al. The Benettin-Strelcyn oval billiard revisited , 1983 .
[9] ON A FUNDAMENTAL THEOREM IN THE THEORY OF DISPERSING BILLIARDS , 1973 .
[10] T. Morita. On the Length Spectrum of the Bounded Scattering Billiards Table , 1995 .
[11] N. Chernov,et al. Entropy, Lyapunov exponents, and mean free path for billiards , 1997 .
[12] H. A. Lorentz. The motion of electrons in metallic bodies I , 1904 .
[13] Sylvie Oliffson Kamphorst,et al. Bounded gain of energy on the breathing circle billiard , 1998, chao-dyn/9811023.
[14] Statistical Mechanics: A Selective Review of Two Central Issues , 1999, math-ph/0010018.
[15] L. Santaló. Integral geometry and geometric probability , 1976 .
[16] D. Ornstein. Bernoulli shifts with the same entropy are isomorphic , 1970 .
[17] Anatole Katok,et al. Invariant Manifolds, Entropy and Billiards: Smooth Maps With Singularities , 1986 .
[18] Domokos Szász,et al. The Erwin Schrr Odinger International Institute for Mathematical Physics Boltzmann's Ergodic Hypothesis, a Conjecture for Centuries? , 2022 .
[19] D. S. Broomhead,et al. The dynamics of billiards with no-slip collisions , 1993 .
[20] J. Machta. Power law decay of correlations in a billiard problem , 1983 .
[21] S. Tabachnikov. Introducing projective billiards , 1997, Ergodic Theory and Dynamical Systems.
[22] M. Lenci. Escape orbits for non-compact flat billiards. , 1996, Chaos.
[23] S. O. Kamphorst,et al. Chaotic properties of the elliptical stadium , 1995, chao-dyn/9501004.
[24] R. Markarian. New ergodic billiards: exact results , 1993 .
[25] Maciej P. Wojtkowski,et al. Principles for the design of billiards with nonvanishing Lyapunov exponents , 1986, Hamiltonian Dynamical Systems.
[26] Nikolai SergeevichHG Krylov,et al. Works on the foundations of statistical physics , 1979 .
[27] Billiards and Conditionally Invariant Probabilities , 1994 .
[28] L. Stojanov. An estimate from above of the number of periodic orbits for semi-dispersed billiards , 1989 .
[29] W. W. Wood,et al. Molecular-dynamics calculations of the velocity-autocorrelation function. Methods, hard-disk results , 1982 .
[30] L. Stoyanov. Instability and entropy for a class of dispersing billiards , 1998 .
[31] E. Cohen,et al. Dynamical ensembles in stationary states , 1995, chao-dyn/9501015.
[32] Jonathan L. F. King,et al. Billiards inside a cusp , 1995 .
[33] N. Chernov,et al. Entropy of non-uniformly hyperbolic plane billiards , 1992 .
[34] D. Burago,et al. Topological entropy of semi-dispersing billiards , 1998, Ergodic Theory and Dynamical Systems.
[35] J. Zukas. Introduction to the Modern Theory of Dynamical Systems , 1998 .
[36] L. Pustyl'nikov. Existence of Invariant Curves for Maps Close to Degenerate Maps, and a Solution of the Fermi-Ulam Problem , 1995 .
[37] Dmitry Burago,et al. Uniform estimates on the number of collisions in semi-dispersing billiards , 1998 .
[38] C. Boldrighini,et al. Billiards in Polygons , 1978 .
[39] G. Benettin,et al. Numerical experiments on the free motion of a point mass moving in a plane convex region: Stochastic transition and entropy , 1978 .
[40] S. O. Kamphorst,et al. Time-dependent billiards , 1995 .
[41] Maciej P. Wojtkowski,et al. Invariant families of cones and Lyapunov exponents , 1985, Ergodic Theory and Dynamical Systems.
[42] Y. Pesin. CHARACTERISTIC LYAPUNOV EXPONENTS AND SMOOTH ERGODIC THEORY , 1977 .
[43] David Ruelle,et al. A MEASURE ASSOCIATED WITH AXIOM-A ATTRACTORS. , 1976 .
[44] Maciej P. Wojtkowski,et al. Measure theoretic entropy of the system of hard spheres , 1988, Ergodic Theory and Dynamical Systems.
[45] N. Chernov,et al. Nonuniformly hyperbolic K-systems are Bernoulli , 1996, Ergodic Theory and Dynamical Systems.
[46] V. Baladi. Positive transfer operators and decay of correlations , 2000 .
[47] Maciej P. Wojtkowski,et al. A system of one dimensional balls with gravity , 1990 .
[48] D. Anosov,et al. Ergodic Properties of Geodesic Flows on Closed Riemannian Manifolds of Negative Curvature , 2020 .
[49] E. H. Hauge. What can one learn from Lorentz models , 1974 .
[50] Takehiko Morita,et al. The symbolic representation of billiards without boundary condition , 1991 .
[51] N. Chernov. Statistical properties of piecewise smooth hyperbolic systems in high dimensions , 1999 .
[52] L. A. Bunimovic. ON BILLIARDS CLOSE TO DISPERSING , 1974 .
[53] L. Young. Recurrence times and rates of mixing , 1999 .
[54] B. Halpern,et al. Strange billiard tables , 1977 .
[55] Leonid A. Bunimovich,et al. Statistical properties of lorentz gas with periodic configuration of scatterers , 1981 .
[56] Leonid A. Bunimovich,et al. Statistical properties of two-dimensional hyperbolic billiards , 1991 .
[57] L. Bunimovich,et al. Conditions of stochasticity of two-dimensional billiards. , 1991, Chaos.
[58] Jan Rehacek,et al. Nowhere Dispersing 3D Billiards with Non-vanishing Lyapunov Exponents , 1997 .
[59] Experiences numeriques sur des billards C1 formes de quatre arcs de cercles , 1986 .
[60] L. Stojanov. NOTE ON THE PERIODIC POINTS OF THE BILLIARD , 1991 .
[61] Escape orbits and ergodicity in infinite step billiards , 1999, chao-dyn/9906017.
[62] Y. Sinai,et al. Entropy of a gas of hard spheres with respect to the group of space-time translations , 1986 .
[63] D. Szász,et al. Ergodic properties of semi-dispersing billiards. I. Two cylindric scatterers in the 3D torus , 1989 .
[64] Measures with infinite Lyapunov exponents for the periodic Lorentz gas , 1994, math/9411237.
[65] V. V. Kozlov,et al. Billiards: A Genetic Introduction to the Dynamics of Systems with Impacts , 1991 .
[66] H. Poincaré,et al. Les méthodes nouvelles de la mécanique céleste , 1899 .
[67] Victor J. Donnay,et al. Using integrability to produce chaos: Billiards with positive entropy , 1991 .
[68] D. Szász,et al. The K-property of three billiard balls , 1991 .
[69] L. Bunimovich. On absolutely focusing mirrors , 1992 .
[70] R. Alexander. Time evolution for infinitely many hard spheres , 1976 .
[71] Andrea Hubacher. Instability of the boundary in the billiard ball problem , 1987 .
[72] D. Burago,et al. A Geometric Approach to Semi-Dispersing Billiards , 2000 .
[73] V. Petkov,et al. On the number of periodic reflecting rays in generic domains , 1988, Ergodic Theory and Dynamical Systems.
[74] A. Katok,et al. Caustics for inner and outer billiards , 1995 .
[75] M. Wojtkowski. Two applications of Jacobi fields to the billiard ball problem , 1994 .
[76] L. Bunimovich. A theorem on ergodicity of two-dimensional hyperbolic billiards , 1990 .
[77] Latchezar Stoyanov,et al. Exponential instability for a class of dispersing billiards , 1999, Ergodic Theory and Dynamical Systems.
[78] Giulio Casati,et al. Origin of Long-Time Tails in Strongly Chaotic Systems , 1983 .
[79] Ja B Pesin. FAMILIES OF INVARIANT MANIFOLDS CORRESPONDING TO NONZERO CHARACTERISTIC EXPONENTS , 1976 .
[80] L. Vaserstein. On systems of particles with finite-range and/or repulsive interactions , 1979 .
[81] L. Bunimovich. On the ergodic properties of nowhere dispersing billiards , 1979 .
[82] B. Gutkin,et al. Hyperbolic Billiards on Surfaces of Constant Curvature , 1999, chao-dyn/9905030.
[83] Y. Sinai,et al. SOME SMOOTH ERGODIC SYSTEMS , 1967 .
[84] N. Chernov. Decay of Correlations and Dispersing Billiards , 1999 .
[85] J. Lewowicz,et al. Analytic models of pseudo-Anosov maps , 1986, Ergodic Theory and Dynamical Systems.
[86] N. Chernov,et al. Decay of correlations for Lorentz gases and hard balls , 2000 .
[87] Jonathan L. King,et al. Three Problems in Search of a Measure , 1994 .
[88] Marek Rychlik. Periodic points of the billiard ball map in a convex domain , 1989 .
[89] Marko Robnik,et al. Classical dynamics of a family of billiards with analytic boundaries , 1983 .
[90] How High-Dimensional Stadia Look Like , 1998 .
[91] Roberto Peirone. Billiards in Tubular Neighborhoods of Manifolds¶of Codimension 1 , 1999 .
[92] R. Markarian. Billiards with Pesin region of measure one , 1988 .
[93] N. Chernov,et al. ERGODICITY OF BILLIARDS IN POLYGONS WITH POCKETS , 1998 .
[94] V. Donnay. Non-ergodicity of Two Particles Interacting via a Smooth Potential , 1999 .
[95] E. Gutkin. Billiards in polygons: Survey of recent results , 1996 .
[96] L. Bunimovich. Many-dimensional nowhere dispersing billiards with chaotic behavior , 1988 .
[97] Jair Koiller,et al. Static and time-dependent perturbations of the classical elliptical billiard , 1996 .
[98] J. Lebowitz. Microscopic origins of irreversible macroscopic behavior , 1999 .
[99] Y. Sinai,et al. BILLIARD TRAJECTORIES IN A POLYHEDRAL ANGLE , 1978 .
[100] J. Lebowitz,et al. Hard Ball Systems and the Lorentz Gas , 2000 .
[101] N. Chernov. Topological entropy and periodic points of two-dimensional hyperbolic billiards , 1991 .
[102] Steven P. Kerckhoff,et al. Ergodicity of billiard flows and quadratic differentials , 1986 .
[103] Maciej P. Wojtkowski,et al. The system of one dimensional balls in an external field. II , 1990 .
[104] L. Bunimovich,et al. Ergodic systems ofn balls in a billiard table , 1992 .
[105] L. Young,et al. STATISTICAL PROPERTIES OF DYNAMICAL SYSTEMS WITH SOME HYPERBOLICITY , 1998 .
[106] A. Katok. Lyapunov exponents, entropy and periodic orbits for diffeomorphisms , 1980 .
[107] L. Bunimovich,et al. Markov Partitions for dispersed billiards , 1980 .
[108] G. Benettin. Power-law behavior of Lyapunov exponents in some conservative dynamical systems , 1984 .
[109] M. Wojtkowski,et al. Two-particle billiard system with arbitrary mass ratio , 1989, Ergodic Theory and Dynamical Systems.
[110] Generic properties of periodic reflecting rays , 1987, Ergodic Theory and Dynamical Systems.
[111] R. Markarian. Non-uniformly hyperbolic billiards , 1994 .
[112] J. Machta,et al. Decay of correlations in the regular Lorentz gas , 1986 .
[113] P. Gaspard,et al. Chaotic scattering theory, thermodynamic formalism, and transport coefficients. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[114] R. Markarian. Statistical properties of dynamical systems with singularities , 1995 .
[115] Y. Sinai. GIBBS MEASURES IN ERGODIC THEORY , 1972 .
[116] M. Wojtkowski. Linearly stable orbits in 3 dimensional billiards , 1990 .
[117] N. Chernov,et al. Limit theorems and Markov approximations for chaotic dynamical systems , 1995 .
[118] R. Bowen. Invariant measures for Markov maps of the interval , 1979 .
[119] Gianluigi Del Magno,et al. An infinite step billiard , 1997, chao-dyn/9709006.
[120] C. Liverani,et al. Potentials on the two-torus for which the Hamiltonian flow is ergodic , 1991 .
[121] Jean-Philippe Bouchaud,et al. Numerical study of aD-dimensional periodic Lorentz gas with universal properties , 1985 .
[122] D. Szász,et al. Non-integrability of cylindric billiards and transitive Lie group actions , 2000, Ergodic Theory and Dynamical Systems.
[123] D. Szász,et al. TheK-property of four billiard balls , 1992 .