Insights into Mycoplasma genitalium metabolism revealed by the structure of MG289, an extracytoplasmic thiamine binding lipoprotein

Mycoplasma genitalium is one of the smallest organisms capable of self‐replication and its sequence is considered a starting point for understanding the minimal genome required for life. MG289, a putative phosphonate substrate binding protein, is considered to be one of these essential genes. The crystal structure of MG289 has been solved at 1.95 Å resolution. The structurally identified thiamine binding region reveals possible mechanisms for ligand promiscuity. MG289 was determined to be an extracytoplasmic thiamine binding lipoprotein. Computational analysis, size exclusion chromatography, and small angle X‐ray scattering indicates that MG289 homodimerizes in a concentration‐dependant manner. Comparisons to the thiamine pyrophosphate binding homolog Cypl reveal insights into the metabolic differences between mycoplasmal species including identifying possible kinases for cofactor phosphorylation and describing the mechanism of thiamine transport into the cell. These results provide a baseline to build our understanding of the minimal metabolic requirements of a living organism. Proteins 2011. © 2010 Wiley‐Liss, Inc.

[1]  J. Janin,et al.  Protein–protein interaction and quaternary structure , 2008, Quarterly Reviews of Biophysics.

[2]  Randy J. Read,et al.  Phenix - a comprehensive python-based system for macromolecular structure solution , 2012 .

[3]  J. Baseman,et al.  Isolation and characterization of Mycoplasma genitalium strains from the human respiratory tract , 1988, Journal of clinical microbiology.

[4]  Charles S. Bond,et al.  TopDraw: a sketchpad for protein structure topology cartoons , 2003, Bioinform..

[5]  Randy J. Read,et al.  Acta Crystallographica Section D Biological , 2003 .

[6]  J. Jensen,et al.  Mycoplasma genitalium as a sexually transmitted infection: implications for screening, testing, and treatment , 2006, Sexually Transmitted Infections.

[7]  E. Gilson,et al.  Evidence for high affinity binding‐protein dependent transport systems in gram‐positive bacteria and in Mycoplasma. , 1988, The EMBO journal.

[8]  S. Smith,et al.  RESPIRATORY PATHWAYS IN THE MYCOPLASMA. I. LACTATE OXIDATION BY MYCOPLASMA GALLISEPTICUM. , 1963, Journal of bacteriology.

[9]  Liisa Holm,et al.  Searching protein structure databases with DaliLite v.3 , 2008, Bioinform..

[10]  R. Fleischmann,et al.  The Minimal Gene Complement of Mycoplasma genitalium , 1995, Science.

[11]  K. Holmes,et al.  Mycoplasma genitalium among young adults in the United States: an emerging sexually transmitted infection. , 2007, American journal of public health.

[12]  K. Henrick,et al.  Inference of macromolecular assemblies from crystalline state. , 2007, Journal of molecular biology.

[13]  Lutz Schmitt,et al.  A structural classification of substrate‐binding proteins , 2010, FEBS letters.

[14]  D. Taylor-Robinson,et al.  Mycoplasma genitalium, a new species from the human urogenital tract. , 1983 .

[15]  F. Quiocho,et al.  Atomic structure and specificity of bacterial periplasmic receptors for active transport and chemotaxis: variation of common themes , 1996, Molecular microbiology.

[16]  S. Goodison,et al.  Structural Insights into the Extracytoplasmic Thiamine-Binding Lipoprotein p37 of Mycoplasma hyorhinis , 2009, Journal of bacteriology.

[17]  Paul D. Adams,et al.  Averaged kick maps: less noise, more signal…and probably less bias , 2009, Acta crystallographica. Section D, Biological crystallography.

[18]  E. Koonin,et al.  A minimal gene set for cellular life derived by comparison of complete bacterial genomes. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[19]  J. Jensen Single-dose azithromycin treatment for Mycoplasma genitalium-positive urethritis: best but not good enough. , 2009, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[20]  R. Wettenhall,et al.  A mycoplasma high‐affinity transport system and the in vitro invasiveness of mouse sarcoma cells. , 1988, The EMBO journal.

[21]  C. Hutchison,et al.  Essential genes of a minimal bacterium. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[22]  D B Louria,et al.  Herpes simplex type II and Mycoplasma genitalium as risk factors for heterosexual HIV transmission: report from the heterosexual HIV transmission study. , 1998, International journal of infectious diseases : IJID : official publication of the International Society for Infectious Diseases.

[23]  Kevin Cowtan,et al.  research papers Acta Crystallographica Section D Biological , 2005 .

[24]  Vinay Satish Kumar,et al.  A Genome-Scale Metabolic Reconstruction of Mycoplasma genitalium, iPS189 , 2009, PLoS Comput. Biol..

[25]  Thomas Dandekar,et al.  Suspected utility of enzymes with multiple activities in the small genome Mycoplasma species: the replacement of the missing "household" nucleoside diphosphate kinase gene and activity by glycolytic kinases. , 2002, Omics : a journal of integrative biology.

[26]  Collaborative Computational,et al.  The CCP4 suite: programs for protein crystallography. , 1994, Acta crystallographica. Section D, Biological crystallography.

[27]  A. Moya,et al.  Determination of the Core of a Minimal Bacterial Gene Set , 2004, Microbiology and Molecular Biology Reviews.

[28]  K. Nishikawa,et al.  Domain dislocation: a change of core structure in periplasmic binding proteins in their evolutionary history. , 1999, Journal of molecular biology.

[29]  R. McKenna,et al.  Structure determination of the cancer-associated Mycoplasma hyorhinis protein Mh-p37. , 2008, Acta crystallographica. Section D, Biological crystallography.

[30]  J. Mccammon,et al.  Situs: A package for docking crystal structures into low-resolution maps from electron microscopy. , 1999, Journal of structural biology.

[31]  M. J. Adams Preparation and Analysis of Protein Crystals , 1983 .

[32]  Alexei Vagin,et al.  Molecular replacement with MOLREP. , 2010, Acta crystallographica. Section D, Biological crystallography.

[33]  J. Pollack,et al.  The metabolism of AIDS-associated mycoplasmas. , 1993, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[34]  B. Finzel,et al.  Anomalous temperature factor behavior and crystal lattice mobility in cytochrome C'. , 1986, Biophysical journal.

[35]  Peter V. Konarev,et al.  ATSAS 2.1 – towards automated and web-supported small-angle scattering data analysis , 2007 .

[36]  G. Richarme Associative properties of the Escherichia coli galactose-binding protein and maltose-binding protein. , 1982, Biochimica et biophysica acta.

[37]  Z. Otwinowski,et al.  Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.

[38]  R. McKenna,et al.  Cloning, expression, purification, crystallization and preliminary X-ray analysis of Mycoplasma genitalium protein MG289. , 2009, Acta crystallographica. Section F, Structural biology and crystallization communications.

[39]  W. Delano The PyMOL Molecular Graphics System , 2002 .

[40]  J. Tully,et al.  A NEWLY DISCOVERED MYCOPLASMA IN THE HUMAN UROGENITAL TRACT , 1981, The Lancet.

[41]  Jue Chen,et al.  Structure, Function, and Evolution of Bacterial ATP-Binding Cassette Systems , 2008, Microbiology and Molecular Biology Reviews.

[42]  Conrad C. Huang,et al.  UCSF Chimera—A visualization system for exploratory research and analysis , 2004, J. Comput. Chem..

[43]  O. White,et al.  Global transposon mutagenesis and a minimal Mycoplasma genome. , 1999, Science.

[44]  K. Iczkowski,et al.  Persistent Exposure to Mycoplasma Induces Malignant Transformation of Human Prostate Cells , 2009, PloS one.