Contour-enhanced resampling of 3D point clouds via graphs

To reduce storage and computational cost for processing and visualizing large-scale 3D point clouds, an efficient resampling strategy is needed to select a representative subset of 3D points that can preserve contours in the original 3D point cloud. We tackle this problem by using graph-based techniques as graphs can represent underlying surfaces and lend themselves well to efficient computation. We first construct a general graph for a 3D point cloud and then propose a graph-based metric to quantify the contour information via high-pass graph filtering. Finally, we obtain an optimal resampling distribution that preserves the contour information by solving an optimization problem. When browsing, the proposed graph-based resampling performs better than uniform resampling both for toy point clouds as well as real large-scale point clouds. Furthermore, as neither mesh construction nor surface normal calculation is involved, the proposed graph-based method is computationally more efficient than the mesh-based methods.

[1]  Charles T. Loop,et al.  Real-time high-resolution sparse voxelization with application to image-based modeling , 2013, HPG '13.

[2]  Wanbo Luo,et al.  Visual analysis of large-scale LiDAR point clouds , 2015, 2015 IEEE International Conference on Big Data (Big Data).

[3]  Babak Taati,et al.  Difference of Normals as a Multi-scale Operator in Unorganized Point Clouds , 2012, 2012 Second International Conference on 3D Imaging, Modeling, Processing, Visualization & Transmission.

[4]  Pascal Frossard,et al.  Graph-Based Compression of Dynamic 3D Point Cloud Sequences , 2015, IEEE Transactions on Image Processing.

[5]  Leila De Floriani,et al.  Multiresolution Mesh Representation: Models and Data Structures , 2002, Tutorials on Multiresolution in Geometric Modelling.

[6]  Jan Kautz,et al.  Accelerated Generative Models for 3D Point Cloud Data , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[7]  Antonio Ortega,et al.  Compression of dynamic 3D point clouds using subdivisional meshes and graph wavelet transforms , 2016, 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[8]  Jelena Kovacevic,et al.  Discrete Signal Processing on Graphs: Sampling Theory , 2015, IEEE Transactions on Signal Processing.

[9]  José M. F. Moura,et al.  Discrete Signal Processing on Graphs , 2012, IEEE Transactions on Signal Processing.

[10]  Radu Bogdan Rusu,et al.  3D is here: Point Cloud Library (PCL) , 2011, 2011 IEEE International Conference on Robotics and Automation.

[11]  Céline Hudelot,et al.  3D Mesh Compression , 2015, ACM Comput. Surv..

[12]  Xiaoxiang Zhu,et al.  Robust Reconstruction of Building Facades for Large Areas Using Spaceborne TomoSAR Point Clouds , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[13]  Jan Dirk Wegner,et al.  Contour Detection in Unstructured 3D Point Clouds , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[14]  Pascal Frossard,et al.  The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains , 2012, IEEE Signal Processing Magazine.

[15]  Pierre Alliez,et al.  Recent advances in compression of 3D meshes , 2005, 2005 13th European Signal Processing Conference.

[16]  C.-C. Jay Kuo,et al.  Geometry-guided progressive lossless 3D mesh coding with octree (OT) decomposition , 2005, ACM Trans. Graph..

[17]  Huosheng Hu,et al.  3D mapping with multi-resolution occupied voxel lists , 2010, Auton. Robots.

[18]  Wolfram Burgard,et al.  OctoMap: an efficient probabilistic 3D mapping framework based on octrees , 2013, Autonomous Robots.

[19]  Jelena Kovacevic,et al.  Signal Recovery on Graphs: Fundamental Limits of Sampling Strategies , 2015, IEEE Transactions on Signal and Information Processing over Networks.

[20]  Antonio Ortega,et al.  Submitted to Ieee Transactions on Signal Processing 1 Efficient Sampling Set Selection for Bandlimited Graph Signals Using Graph Spectral Proxies , 2022 .

[21]  C.-C. Jay Kuo,et al.  Technologies for 3D mesh compression: A survey , 2005, J. Vis. Commun. Image Represent..