Multiscale crystal plasticity modeling based on geometrically necessary crystal defects and simulation on fine-graining for polycrystal

It is important to develop a simulation model reproducing a formation process of ultrafine-grained metals under severe plastic deformation in order to obtain high-strength materials. In this study, we define two kinds of densities of the geometrically necessary (GN) crystal defects suitable for a crystal plasticity theory, i.e., densities of GN dislocation and GN incompatibility corresponding to isolated dislocation and dislocation pairs, respectively. We introduce these dislocation densities with dynamic recovery effect into the hardening law of a single crystal. Moreover, a multiscale crystal plasticity FE simulation is carried out for an FCC polycrystal under severe strain condition. It is computationally attempted to predict the formation of fine-grains and to visualize distributions of dislocation densities and crystal orientations in a specimen. We discuss about a generation of subdivision with large angle boundaries separated by GNBs and refinement of deformation-induced grains.

[1]  N. Tsuji,et al.  Elongation increase in ultra-fine grained Al–Fe–Si alloy sheets , 2005 .

[2]  M. Ashby The deformation of plastically non-homogeneous materials , 1970 .

[3]  F. Yin,et al.  Effect of Initial Grain Orientation on Evolution of Deformed Microstructure in Hot Compressed Ni-30Fe Alloy , 2004 .

[4]  M. Ashby,et al.  Strain gradient plasticity: Theory and experiment , 1994 .

[5]  Esteban P. Busso,et al.  A study of microstructural length scale effects on the behaviour of FCC polycrystals using strain gradient concepts , 2004 .

[6]  近藤 一夫,et al.  RAAG memoirs of the unifying study of basic problems in engineering and physical sciences by means of geometry , 1958 .

[7]  Johannes Mueller,et al.  Local Investigations of the Mechanical Properties of Ultrafine Grained Metals by Nanoindentations , 2006 .

[8]  K. Kunze,et al.  Orientation imaging: The emergence of a new microscopy , 1993 .

[9]  H. Mughrabi,et al.  Annihilation of dislocations during tensile and cyclic deformation and limits of dislocation densities , 1979 .

[10]  David L. McDowell,et al.  A multiscale multiplicative decomposition for elastoplasticity of polycrystals , 2003 .

[11]  T. Ohashi Finite-element analysis of plastic slip and evolution of geometrically necessary dislocations in fcc crystals , 1997 .

[12]  Noel P. O’Dowd,et al.  Gradient-dependent deformation of two-phase single crystals , 2000 .

[13]  T. Ohashi Three dimensional structures of the geometrically necessary dislocations in matrix-inclusion systems under uniaxial tensile loading , 2004 .

[14]  Cristian Teodosiu,et al.  Large plastic deformation of crystalline aggregates , 1997 .

[15]  Doris Kuhlmann-Wilsdorf,et al.  Theory of plastic deformation: - properties of low energy dislocation structures , 1989 .

[16]  Mohammed A. Zikry,et al.  Inelastic microstructural failure mechanisms in crystalline materials with high angle grain boundaries , 1996 .

[17]  J. Rice,et al.  Rate sensitivity of plastic flow and implications for yield-surface vertices , 1983 .

[18]  H. Zbib,et al.  A thermodynamical theory of gradient elastoplasticity with dislocation density tensor. I: Fundamentals , 1999 .

[19]  Yuri Estrin,et al.  A Dislocation Density Based Constitutive Model for Cyclic Deformation , 1996 .

[20]  Toshihiro Kameda,et al.  Three dimensional dislocation-based crystalline constitutive formulation for ordered intermetallics , 1998 .

[21]  J. Moosbrugger,et al.  Finite element simulation of PSB macroband nucleation and propagation in single crystal nickel cycled at low plastic strain amplitudes , 2006 .

[22]  A. Needleman,et al.  A tangent modulus method for rate dependent solids , 1984 .

[23]  T. Ohashi Crystal plasticity analysis of dislocation emission from micro voids , 2005 .

[24]  Morton E. Gurtin,et al.  On the plasticity of single crystals: free energy, microforces, plastic-strain gradients , 2000 .

[25]  Tetsuya Ohashi,et al.  Numerical modelling of plastic multislip in metal crystals of f.c.c. type , 1994 .

[26]  David L. McDowell,et al.  Modeling Dislocations and Disclinations With Finite Micropolar Elastoplasticity , 2006 .

[27]  J. Weertman,et al.  Anomalous work hardening, non-redundant screw dislocations in a circular bar deformed in torsion, and non-redundant edge dislocations in a bent foil , 2002 .

[28]  Alan Needleman,et al.  Material rate dependence and localized deformation in crystalline solids , 1983 .

[29]  C. Rey,et al.  Modeling of deformation and rotation bands and of deformation induced grain boundaries in IF steel aggregate during large plane strain compression , 2004 .

[30]  E. Kröner,et al.  Kontinuumstheorie der Versetzungen und Eigenspannungen , 1958 .

[31]  T. Ohashi Evaluation and visualization of geometrically necessary dislocations in metal microstructures by means of continuum mechanics analysis , 1999 .

[32]  S. Forest,et al.  Plastic slip distribution in two-phase laminate microstructures: Dislocation-based versus generalized-continuum approaches , 2003 .

[33]  J. Moosbrugger,et al.  A substructure mixtures model for the cyclic plasticity of single slip oriented nickel single crystal at low plastic strain amplitudes , 2005 .

[34]  C. Rey,et al.  Plastic heterogeneities of a copper multicrystal deformed in uniaxial tension : Experimental study and finite element simulations , 2000 .