A CUDA-Based Cooperative Evolutionary Multi-Swarm Optimization Applied to Engineering Problems

This paper presents a variation of Evolutionary Particle Swarm Optimization applied to the concept of master/slave swarm with mechanism of sharing data for the acceleration of convergence. The implementation called Cooperative Evolutionary MultiSwarm Optimization on Graphics Processing Units (CMEPSOGPU) consists in using thousands of threads in various slave swarms on the CUDA parallel architecture, where each one works in a parallel and cooperative way in order to improve the search for best result and reduce the number of iterations. The use of CMEPSO-GPU applied to engineering problems showed superior results when compared to other implementations found in the scientific literature.

[1]  Ivona Brajevic,et al.  Improved artificial bee colony algorithm for constrained problems , 2010 .

[2]  Carlos A. Coello Coello,et al.  Solving Engineering Optimization Problems with the Simple Constrained Particle Swarm Optimizer , 2008, Informatica.

[3]  Heitor Silvério Lopes,et al.  Computação evolucionária em problemas de engenharia , 2011 .

[4]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[5]  Glauber Duarte Monteiro,et al.  PSO-GPU: accelerating particle swarm optimization in CUDA-based graphics processing units , 2011, GECCO.

[6]  Jie Cheng,et al.  Programming Massively Parallel Processors. A Hands-on Approach , 2010, Scalable Comput. Pract. Exp..

[7]  Yue Shi,et al.  A modified particle swarm optimizer , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[8]  Ling Wang,et al.  An effective co-evolutionary particle swarm optimization for constrained engineering design problems , 2007, Eng. Appl. Artif. Intell..

[9]  Joao Barros,et al.  The evolutionary algorithm EPSO to coordinate directional overcurrent relays , 2010 .

[10]  Stefano Cagnoni,et al.  GPU-based asynchronous particle swarm optimization , 2011, GECCO '11.

[11]  Carlos A. Coello Coello,et al.  Constraint-handling in genetic algorithms through the use of dominance-based tournament selection , 2002, Adv. Eng. Informatics.

[12]  朱云龙,et al.  Multi-population Cooperative Particle Swarm Optimization , 2005, ECAL.

[13]  Otávio Noura Teixeira Algoritmo genético com interação social nebulosa , 2012 .

[14]  Ruppa K. Thulasiram,et al.  Collaborative multi-swarm PSO for task matching using graphics processing units , 2011, GECCO '11.

[15]  Roberto Célio Limão de Oliveira,et al.  Algoritmo genético com interação social na resolução de problemas de otimização global com restrições , 2011 .

[16]  R. Eberhart,et al.  Comparing inertia weights and constriction factors in particle swarm optimization , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[17]  Péricles B. C. de Miranda,et al.  Multi-ring Particle Swarm Optimization , 2008, 2008 10th Brazilian Symposium on Neural Networks.

[18]  Vladimiro Miranda,et al.  EPSO-evolutionary particle swarm optimization, a new algorithm with applications in power systems , 2002, IEEE/PES Transmission and Distribution Conference and Exhibition.

[19]  Andries Petrus Engelbrecht,et al.  A Cooperative approach to particle swarm optimization , 2004, IEEE Transactions on Evolutionary Computation.