Synaptic cell adhesion.

Chemical synapses are asymmetric intercellular junctions that mediate synaptic transmission. Synaptic junctions are organized by trans-synaptic cell adhesion molecules bridging the synaptic cleft. Synaptic cell adhesion molecules not only connect pre- and postsynaptic compartments, but also mediate trans-synaptic recognition and signaling processes that are essential for the establishment, specification, and plasticity of synapses. A growing number of synaptic cell adhesion molecules that include neurexins and neuroligins, Ig-domain proteins such as SynCAMs, receptor phosphotyrosine kinases and phosphatases, and several leucine-rich repeat proteins have been identified. These synaptic cell adhesion molecules use characteristic extracellular domains to perform complementary roles in organizing synaptic junctions that are only now being revealed. The importance of synaptic cell adhesion molecules for brain function is highlighted by recent findings implicating several such molecules, notably neurexins and neuroligins, in schizophrenia and autism.

[1]  Ben M. Webb,et al.  ModBase, a database of annotated comparative protein structure models and associated resources , 2013, Nucleic Acids Res..

[2]  T. Südhof,et al.  Jcb: Article , 2022 .

[3]  Eunjoon Kim,et al.  The SALM/Lrfn family of leucine-rich repeat-containing cell adhesion molecules. , 2011, Seminars in cell & developmental biology.

[4]  Meghan T. Miller,et al.  The crystal structure of the α-neurexin-1 extracellular region reveals a hinge point for mediating synaptic adhesion and function. , 2011, Structure.

[5]  G. Rudenko,et al.  The structure of neurexin 1α reveals features promoting a role as synaptic organizer. , 2011, Structure.

[6]  R. Nicoll,et al.  Functional dependence of neuroligin on a new non-PDZ intracellular domain , 2011, Nature Neuroscience.

[7]  Sathyanarayanan V. Puthanveettil,et al.  Neurexin-Neuroligin Transsynaptic Interaction Mediates Learning-Related Synaptic Remodeling and Long-Term Facilitation in Aplysia , 2011, Neuron.

[8]  M. Yuzaki,et al.  Cbln family proteins promote synapse formation by regulating distinct neurexin signaling pathways in various brain regions , 2011, The European journal of neuroscience.

[9]  S. Löwel,et al.  Neuroligin-4 is localized to glycinergic postsynapses and regulates inhibition in the retina , 2011, Proceedings of the National Academy of Sciences.

[10]  T. Murphy,et al.  Postsynaptic TrkC and Presynaptic PTPσ Function as a Bidirectional Excitatory Synaptic Organizing Complex , 2011, Neuron.

[11]  M. Fang,et al.  Neuroligin 2 Is Required for Synapse Development and Function at the Drosophila Neuromuscular Junction , 2011, The Journal of Neuroscience.

[12]  T. Südhof,et al.  SynCAM 1 Adhesion Dynamically Regulates Synapse Number and Impacts Plasticity and Learning , 2010, Neuron.

[13]  Y. Modis,et al.  N-Glycosylation at the SynCAM (Synaptic Cell Adhesion Molecule) Immunoglobulin Interface Modulates Synaptic Adhesion* , 2010, The Journal of Biological Chemistry.

[14]  Erik B. Bloss,et al.  Persistence of Coordinated Long-Term Potentiation and Dendritic Spine Enlargement at Mature Hippocampal CA1 Synapses Requires N-Cadherin , 2010, The Journal of Neuroscience.

[15]  T. Takeuchi,et al.  Trans-Synaptic Interaction of GluRδ2 and Neurexin through Cbln1 Mediates Synapse Formation in the Cerebellum , 2010, Cell.

[16]  D. Owald,et al.  Drosophila Neuroligin 1 Promotes Growth and Postsynaptic Differentiation at Glutamatergic Neuromuscular Junctions , 2010, Neuron.

[17]  Raika Pancaroglu,et al.  LRRTMs and Neuroligins Bind Neurexins with a Differential Code to Cooperate in Glutamate Synapse Development , 2010, The Journal of Neuroscience.

[18]  T. Südhof,et al.  Neurexins Physically and Functionally Interact with GABAA Receptors , 2010, Neuron.

[19]  D. Muller,et al.  N-cadherin mediates plasticity-induced long-term spine stabilization , 2010, The Journal of cell biology.

[20]  T. Biederer,et al.  SynCAM 1 participates in axo-dendritic contact assembly and shapes neuronal growth cones , 2010, Proceedings of the National Academy of Sciences.

[21]  Thomas C. Südhof,et al.  LRRTM2 Functions as a Neurexin Ligand in Promoting Excitatory Synapse Formation , 2009, Neuron.

[22]  J. Yates,et al.  LRRTM2 Interacts with Neurexin1 and Regulates Excitatory Synapse Formation , 2009, Neuron.

[23]  S. Cullheim,et al.  SynCAM1 expression correlates with restoration of central synapses on spinal motoneurons after two different models of peripheral nerve injury , 2009, The Journal of comparative neurology.

[24]  T. Südhof,et al.  Neuroligin-2 Deletion Selectively Decreases Inhibitory Synaptic Transmission Originating from Fast-Spiking but Not from Somatostatin-Positive Interneurons , 2009, The Journal of Neuroscience.

[25]  T. Südhof,et al.  Neuroligin‐1 performs neurexin‐dependent and neurexin‐independent functions in synapse validation , 2009, The EMBO journal.

[26]  T. Südhof,et al.  Mouse neurexin-1α deletion causes correlated electrophysiological and behavioral changes consistent with cognitive impairments , 2009, Proceedings of the National Academy of Sciences.

[27]  K. Takahashi-Niki,et al.  Identification of functional marker proteins in the mammalian growth cone , 2009, Proceedings of the National Academy of Sciences.

[28]  M. Hoon,et al.  Neuroligin 2 Drives Postsynaptic Assembly at Perisomatic Inhibitory Synapses through Gephyrin and Collybistin , 2009, Neuron.

[29]  Eunjoon Kim,et al.  The NGL family of leucine-rich repeat-containing synaptic adhesion molecules , 2009, Molecular and Cellular Neuroscience.

[30]  J. Lindstrom,et al.  Presynaptic Targeting of α4β2 Nicotinic Acetylcholine Receptors Is Regulated by Neurexin-1β* , 2009, The Journal of Biological Chemistry.

[31]  G. Turrigiano,et al.  Synapse Development and Plasticity: Roles of Ephrin/eph Receptor Signaling This Review Comes from a Themed Issue on Signalling Mechanisms Edited Properties of Ephrin/eph Underlying Their Role in Synaptogenesis Forward Signaling of Ephb Receptor: Role in Synaptogenesis and Spine Morphogenesis Signal , 2022 .

[32]  B. Christie,et al.  Overexpression of the cell adhesion protein neuroligin‐1 induces learning deficits and impairs synaptic plasticity by altering the ratio of excitation to inhibition in the hippocampus , 2009, Hippocampus.

[33]  Thomas Bourgeron,et al.  A synaptic trek to autism , 2009, Current Opinion in Neurobiology.

[34]  S. Strittmatter,et al.  An Unbiased Expression Screen for Synaptogenic Proteins Identifies the LRRTM Protein Family as Synaptic Organizers , 2009, Neuron.

[35]  E. Ullian,et al.  Neuronal pentraxins mediate silent synapse conversion in the developing visual system , 2008, International Journal of Developmental Neuroscience.

[36]  T. Südhof Neuroligins and neurexins link synaptic function to cognitive disease , 2008, Nature.

[37]  M. Missler,et al.  Mutational analysis of the neurexin/neuroligin complex reveals essential and regulatory components , 2008, Proceedings of the National Academy of Sciences.

[38]  T. Biederer,et al.  Expression and adhesion profiles of SynCAM molecules indicate distinct neuronal functions , 2008, The Journal of comparative neurology.

[39]  Olena Bukalo,et al.  Modulation of synaptic transmission and plasticity by cell adhesion and repulsion molecules. , 2008, Neuron glia biology.

[40]  M. Sur,et al.  Gene expression patterns in visual cortex during the critical period: Synaptic stabilization and reversal by visual deprivation , 2008, Proceedings of the National Academy of Sciences.

[41]  Hollis T. Cline,et al.  Insulin Receptor Signaling Regulates Synapse Number, Dendritic Plasticity, and Circuit Function In Vivo , 2008, Neuron.

[42]  M. Zhuo,et al.  Synaptic Imbalance, Stereotypies, and Impaired Social Interactions in Mice with Altered Neuroligin 2 Expression , 2008, The Journal of Neuroscience.

[43]  N. Xu,et al.  Netrin‐G2 and netrin‐G2 ligand are both required for normal auditory responsiveness , 2008, Genes, brain, and behavior.

[44]  Caizhi Wu,et al.  Bergmann Glia and the Recognition Molecule CHL1 Organize GABAergic Axons and Direct Innervation of Purkinje Cell Dendrites , 2008, PLoS biology.

[45]  R. Petralia,et al.  The SALM Family of Adhesion-like Molecules Forms Heteromeric and Homomeric Complexes* , 2008, Journal of Biological Chemistry.

[46]  Jens Frahm,et al.  Reduced social interaction and ultrasonic communication in a mouse model of monogenic heritable autism , 2008, Proceedings of the National Academy of Sciences.

[47]  Masahito Yamagata,et al.  Dscam and Sidekick proteins direct lamina-specific synaptic connections in vertebrate retina , 2008, Nature.

[48]  M. Poo,et al.  Ephrin-B reverse signaling promotes structural and functional synaptic maturation in vivo , 2008, Nature Neuroscience.

[49]  L. Landmesser,et al.  Selective Targeting of Different Neural Cell Adhesion Molecule Isoforms during Motoneuron–Myotube Synapse Formation in Culture and the Switch from an Immature to Mature Form of Synaptic Vesicle Cycling , 2007, The Journal of Neuroscience.

[50]  Thomas C. Südhof,et al.  Structures of Neuroligin-1 and the Neuroligin-1/Neurexin-1β Complex Reveal Specific Protein-Protein and Protein-Ca2+ Interactions , 2007, Neuron.

[51]  V. Stein,et al.  SynCAMs Organize Synapses through Heterophilic Adhesion , 2007, The Journal of Neuroscience.

[52]  W. Weis,et al.  Structure and mechanism of cadherins and catenins in cell-cell contacts. , 2007, Annual review of cell and developmental biology.

[53]  Jacqueline Blundell,et al.  A Neuroligin-3 Mutation Implicated in Autism Increases Inhibitory Synaptic Transmission in Mice , 2007, Science.

[54]  P. Scheiffele,et al.  Neuroligin‐3 is a neuronal adhesion protein at GABAergic and glutamatergic synapses , 2007, The European journal of neuroscience.

[55]  K. Murai,et al.  The EphA4 receptor regulates dendritic spine remodeling by affecting β1-integrin signaling pathways , 2007, The Journal of cell biology.

[56]  V. Budnik,et al.  Crucial Role of Drosophila Neurexin in Proper Active Zone Apposition to Postsynaptic Densities, Synaptic Growth, and Synaptic Transmission , 2007, Neuron.

[57]  Lu Chen,et al.  Postsynaptic EphrinB3 Promotes Shaft Glutamatergic Synapse Formation , 2007, The Journal of Neuroscience.

[58]  T. Südhof,et al.  Activity-Dependent Validation of Excitatory versus Inhibitory Synapses by Neuroligin-1 versus Neuroligin-2 , 2007, Neuron.

[59]  T. Gao,et al.  Neuregulin-1 Enhances Depolarization-Induced GABA Release , 2007, Neuron.

[60]  G. Lynch,et al.  Behavioral / Systems / Cognitive Brain-Derived Neurotrophic Factor Promotes Long-Term Potentiation-Related Cytoskeletal Changes in Adult Hippocampus , 2007 .

[61]  A. Acker-Palmer,et al.  Grb4 and GIT1 transduce ephrinB reverse signals modulating spine morphogenesis and synapse formation , 2007, Nature Neuroscience.

[62]  M. Dalva,et al.  Intracellular and Trans-Synaptic Regulation of Glutamatergic Synaptogenesis by EphB Receptors , 2006, The Journal of Neuroscience.

[63]  N. Woo,et al.  Distinct Roles of the β1-Class Integrins at the Developing and the Mature Hippocampal Excitatory Synapse , 2006, The Journal of Neuroscience.

[64]  L. Reichardt,et al.  Neurotrophin-regulated signalling pathways , 2006, Philosophical Transactions of the Royal Society B: Biological Sciences.

[65]  M. Schachner,et al.  NCAM promotes assembly and activity-dependent remodeling of the postsynaptic signaling complex , 2006, The Journal of cell biology.

[66]  Thomas C. Südhof,et al.  Neuroligins Determine Synapse Maturation and Function , 2006, Neuron.

[67]  R. Weinberg,et al.  NGL family PSD-95–interacting adhesion molecules regulate excitatory synapse formation , 2006, Nature Neuroscience.

[68]  P. Scheiffele,et al.  Alternative Splicing Controls Selective Trans-Synaptic Interactions of the Neuroligin-Neurexin Complex , 2006, Neuron.

[69]  M. Missler,et al.  The resilient synapse: insights from genetic interference of synaptic cell adhesion molecules , 2006, Cell and Tissue Research.

[70]  L. Reichardt,et al.  p120 Catenin Regulates Dendritic Spine and Synapse Development through Rho-Family GTPases and Cadherins , 2006, Neuron.

[71]  M. Takeichi,et al.  Interneurite affinity is regulated by heterophilic nectin interactions in concert with the cadherin machinery , 2006, The Journal of cell biology.

[72]  Robert Moore,et al.  Development/plasticity/repair N-cadherin Transsynaptically Regulates Short-term Plasticity at Glutamatergic Synapses in Embryonic Stem Cell-derived Neurons the Cell Adhesion Molecule N-cadherin Has Been Proposed to Regulate Synapse Formation in Mammalian Central Neurons. This Is Based on Its Synapti , 2022 .

[73]  B. Kaang,et al.  SALM Synaptic Cell Adhesion-like Molecules Regulate the Differentiation of Excitatory Synapses , 2006, Neuron.

[74]  R. Petralia,et al.  A Novel Family of Adhesion-Like Molecules That Interacts with the NMDA Receptor , 2006, The Journal of Neuroscience.

[75]  T. Biederer,et al.  Cell–cell interactions in synaptogenesis , 2006, Current Opinion in Neurobiology.

[76]  Ronald L. Davis,et al.  β1-Integrins Are Required for Hippocampal AMPA Receptor-Dependent Synaptic Transmission, Synaptic Plasticity, and Working Memory , 2006, The Journal of Neuroscience.

[77]  J. Dubochet,et al.  The mammalian central nervous synaptic cleft contains a high density of periodically organized complexes. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[78]  Thomas C. Südhof,et al.  A Splice Code for trans-Synaptic Cell Adhesion Mediated by Binding of Neuroligin 1 to α- and β-Neurexins , 2005, Neuron.

[79]  Xiaoling Li,et al.  Expression and functional characterization of LRRC4, a novel brain‐specific member of the LRR superfamily , 2005, FEBS letters.

[80]  T. Südhof,et al.  Extracellular Domains of α-Neurexins Participate in Regulating Synaptic Transmission by Selectively Affecting N- and P/Q-Type Ca2+ Channels , 2005, The Journal of Neuroscience.

[81]  Lu Chen,et al.  Postsynaptic assembly induced by neurexin-neuroligin interaction and neurotransmitter , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[82]  B. Luikart,et al.  TrkB Has a Cell-Autonomous Role in the Establishment of Hippocampal Schaffer Collateral Synapses , 2005, The Journal of Neuroscience.

[83]  C. Hoogenraad,et al.  LAR receptor protein tyrosine phosphatases in the development and maintenance of excitatory synapses , 2005, Nature Neuroscience.

[84]  S. Itoh,et al.  Nectin-like molecule-1/TSLL1/SynCAM3: a neural tissue-specific immunoglobulin-like cell-cell adhesion molecule localizing at non-junctional contact sites of presynaptic nerve terminals, axons and glia cell processes , 2005, Journal of Cell Science.

[85]  Friedrich Förster,et al.  Morphological characterization of molecular complexes present in the synaptic cleft. , 2005, Structure.

[86]  P. Scheiffele,et al.  Control of Excitatory and Inhibitory Synapse Formation by Neuroligins , 2005, Science.

[87]  J. Sanes,et al.  Gamma protocadherins are required for synaptic development in the spinal cord. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[88]  Ann Marie Craig,et al.  Neurexins Induce Differentiation of GABA and Glutamate Postsynaptic Specializations via Neuroligins , 2004, Cell.

[89]  M. Tremblay,et al.  Functional significance of the LAR receptor protein tyrosine phosphatase family in development and diseases. , 2004, Biochemistry and cell biology = Biochimie et biologie cellulaire.

[90]  Priscilla Wu,et al.  Ankyrin-Based Subcellular Gradient of Neurofascin, an Immunoglobulin Family Protein, Directs GABAergic Innervation at Purkinje Axon Initial Segment , 2004, Cell.

[91]  Cornelia I Bargmann,et al.  Synaptic Specificity Is Generated by the Synaptic Guidepost Protein SYG-2 and Its Receptor, SYG-1 , 2004, Cell.

[92]  L. Landmesser,et al.  Distinct Roles of Different Neural Cell Adhesion Molecule (NCAM) Isoforms in Synaptic Maturation Revealed by Analysis of NCAM 180 kDa Isoform-Deficient Mice , 2004, The Journal of Neuroscience.

[93]  T. Südhof,et al.  Postsynaptic N-methyl-D-aspartate receptor function requires alpha-neurexins. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[94]  Michelle N. Ngo,et al.  Multiple EphB receptor tyrosine kinases shape dendritic spines in the hippocampus , 2003, The Journal of cell biology.

[95]  A. Gurney,et al.  The netrin-G1 ligand NGL-1 promotes the outgrowth of thalamocortical axons , 2003, Nature Neuroscience.

[96]  W. Birchmeier,et al.  Role of β-Catenin in Synaptic Vesicle Localization and Presynaptic Assembly , 2003, Neuron.

[97]  H. Zoghbi Postnatal Neurodevelopmental Disorders: Meeting at the Synapse? , 2003, Science.

[98]  T. Südhof,et al.  α-Neurexins couple Ca2+ channels to synaptic vesicle exocytosis , 2003, Nature.

[99]  Hidekazu Tanaka,et al.  γ-Protocadherins Are Targeted to Subsets of Synapses and Intracellular Organelles in Neurons , 2003, The Journal of Neuroscience.

[100]  M. Saarma,et al.  A novel gene family encoding leucine-rich repeat transmembrane proteins differentially expressed in the nervous system. , 2003, Genomics.

[101]  K. Murai,et al.  Control of hippocampal dendritic spine morphology through ephrin-A3/EphA4 signaling , 2003, Nature Neuroscience.

[102]  J. Sanes,et al.  Gamma Protocadherins Are Required for Survival of Spinal Interneurons , 2002, Neuron.

[103]  P. Sonderegger,et al.  The Calsyntenins—A Family of Postsynaptic Membrane Proteins with Distinct Neuronal Expression Patterns , 2002, Molecular and Cellular Neuroscience.

[104]  Masahito Yamagata,et al.  Sidekicks Synaptic Adhesion Molecules that Promote Lamina-Specific Connectivity in the Retina , 2002, Cell.

[105]  T. Südhof,et al.  SynCAM, a Synaptic Adhesion Molecule That Drives Synapse Assembly , 2002, Science.

[106]  P. Scheiffele Faculty Opinions recommendation of Synaptically targeted narp plays an essential role in the aggregation of AMPA receptors at excitatory synapses in cultured spinal neurons. , 2002 .

[107]  M. Takeichi,et al.  Cadherin Regulates Dendritic Spine Morphogenesis , 2002, Neuron.

[108]  R. O’Brien,et al.  Synaptically Targeted Narp Plays an Essential Role in the Aggregation of AMPA Receptors at Excitatory Synapses in Cultured Spinal Neurons , 2002, The Journal of Neuroscience.

[109]  T. Südhof,et al.  Structure and evolution of neurexin genes: insight into the mechanism of alternative splicing. , 2002, Genomics.

[110]  T. Jessell,et al.  Regulation of Motor Neuron Pool Sorting by Differential Expression of Type II Cadherins , 2002, Cell.

[111]  G. Knott,et al.  Formation of Dendritic Spines with GABAergic Synapses Induced by Whisker Stimulation in Adult Mice , 2002, Neuron.

[112]  D. V. Vactor,et al.  Drosophila Liprin-α and the Receptor Phosphatase Dlar Control Synapse Morphogenesis , 2002, Neuron.

[113]  L. Reichardt,et al.  TrkB receptor signaling is required for establishment of GABAergic synapses in the cerebellum , 2002, Nature Neuroscience.

[114]  Y. Takai,et al.  Nectin: an adhesion molecule involved in formation of synapses. , 2002, The Journal of cell biology.

[115]  S. Itohara,et al.  Complementary expression and neurite outgrowth activity of netrin-G subfamily members , 2002, Mechanisms of Development.

[116]  T. Südhof,et al.  CASK and Protein 4.1 Support F-actin Nucleation on Neurexins* , 2001, The Journal of Biological Chemistry.

[117]  T. Südhof,et al.  A stoichiometric complex of neurexins and dystroglycan in brain , 2001, The Journal of cell biology.

[118]  Y. Muller,et al.  LG/LNS domains: multiple functions -- one business end? , 2001, Trends in biochemical sciences.

[119]  G. Westbrook,et al.  Integrins mediate functional pre- and postsynaptic maturation at a hippocampal synapse , 2001, Nature.

[120]  Michael E Greenberg,et al.  EphB Receptors Interact with NMDA Receptors and Regulate Excitatory Synapse Formation , 2000, Cell.

[121]  R. Fetter,et al.  Neuroligin Expressed in Nonneuronal Cells Triggers Presynaptic Development in Contacting Axons , 2000, Cell.

[122]  N. Toni,et al.  LTP promotes formation of multiple spine synapses between a single axon terminal and a dendrite , 1999, Nature.

[123]  M. Zhen,et al.  The liprin protein SYD-2 regulates the differentiation of presynaptic termini in C. elegans , 1999, Nature.

[124]  T. Südhof,et al.  Neuroligin 1 is a postsynaptic cell-adhesion molecule of excitatory synapses. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[125]  Hidekazu Tanaka,et al.  N-Cadherin Redistribution during Synaptogenesis in Hippocampal Neurons , 1998, The Journal of Neuroscience.

[126]  T. Südhof,et al.  Neurexophilins Form a Conserved Family of Neuropeptide-Like Glycoproteins , 1998, The Journal of Neuroscience.

[127]  T. Südhof,et al.  Binding of neuroligins to PSD-95. , 1997, Science.

[128]  T. Schikorski,et al.  Quantitative Ultrastructural Analysis of Hippocampal Excitatory Synapses Materials and Methods Terminology Fixation and Embedding , 2022 .

[129]  M. Takeichi,et al.  The catenin/cadherin adhesion system is localized in synaptic junctions bordering transmitter release zones , 1996, The Journal of cell biology.

[130]  N. Toni,et al.  PSA–NCAM Is Required for Activity-Induced Synaptic Plasticity , 1996, Neuron.

[131]  T. Südhof,et al.  CASK: a novel dlg/PSD95 homolog with an N-terminal calmodulin-dependent protein kinase domain identified by interaction with neurexins , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[132]  T. Südhof,et al.  Structures, Alternative Splicing, and Neurexin Binding of Multiple Neuroligins (*) , 1996, The Journal of Biological Chemistry.

[133]  T. Südhof,et al.  Neuroligin 1: A splice site-specific ligand for β-neurexins , 1995, Cell.

[134]  T. Südhof,et al.  Cartography of neurexins: More than 1000 isoforms generated by alternative splicing and expressed in distinct subsets of neurons , 1995, Neuron.

[135]  T. Südhof,et al.  Conserved domain structure of beta-neurexins. Unusual cleaved signal sequences in receptor-like neuronal cell-surface proteins. , 1994, The Journal of biological chemistry.

[136]  T. Südhof,et al.  Neurexin III alpha: extensive alternative splicing generates membrane-bound and soluble forms. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[137]  S. J. Smith,et al.  A real-time analysis of growth cone-target cell interactions during the formation of stable contacts between hippocampal neurons in culture. , 1992, Journal of neurobiology.

[138]  T. Südhof,et al.  Neurexins: synaptic cell surface proteins related to the alpha-latrotoxin receptor and laminin. , 1992, Science.

[139]  R. Bunge,et al.  Morphological changes in the neuritic growth cone and target neuron during synaptic junction development in culture , 1976, The Journal of cell biology.

[140]  O. Hobert,et al.  The neurexin superfamily of Caenorhabditis elegans. , 2011, Gene expression patterns : GEP.

[141]  B. van der Zwaag,et al.  Contactins: structural aspects in relation to developmental functions in brain disease. , 2011, Advances in protein chemistry and structural biology.

[142]  C. Formstone 7TM-Cadherins: developmental roles and future challenges. , 2010, Advances in experimental medicine and biology.

[143]  M. Sternberg,et al.  Protein structure prediction on the Web: a case study using the Phyre server , 2009, Nature Protocols.

[144]  T. Biederer Bioinformatic characterization of the SynCAM family of immunoglobulin-like domain-containing adhesion molecules. , 2006, Genomics.

[145]  S. Jamain,et al.  Neuroligin 2 is exclusively localized to inhibitory synapses. , 2004, European journal of cell biology.

[146]  T. Südhof,et al.  Postsynaptic N-methyl-D-aspartate receptor function requires-neurexins , 2004 .

[147]  T. N. Bhat,et al.  The Protein Data Bank , 2000, Nucleic Acids Res..

[148]  N. Guex,et al.  SWISS‐MODEL and the Swiss‐Pdb Viewer: An environment for comparative protein modeling , 1997, Electrophoresis.

[149]  V. P. Whittaker,et al.  The isolation of nerve endings from brain: an electron-microscopic study of cell fragments derived by homogenization and centrifugation. , 1962, Journal of anatomy.

[150]  E. Gray,et al.  Axo-somatic and axo-dendritic synapses of the cerebral cortex: an electron microscope study. , 1959, Journal of anatomy.

[151]  G. Palade,et al.  Electron microscope observations of interneuronal and neuromuscular synapses , 1954 .

[152]  Clive,et al.  Conserved Domain Structure of P-Neurexins , 2022 .