An introduction to the thermodynamic and macrostate levels of nonequivalent ensembles

This short paper presents a nontechnical introduction to the problem of nonequivalent microcanonical and canonical ensembles. Both the thermodynamic and the macrostate levels of definition of nonequivalent ensembles are introduced. The many relationships that exist between these two levels are also explained in simple physical terms.

[1]  D. Gross Microcanonical thermodynamics and statistical fragmentation of dissipative systems. The topological structure of the N-body phase space , 1997 .

[2]  E. Olivieri,et al.  Large deviations and metastability: Large deviations and statistical mechanics , 2005 .

[3]  Alexander H. Hartmann,et al.  Introduction to Statistical Physics , 2003 .

[4]  G. Eyink,et al.  Negative-temperature states and large-scale, long-lived vortices in two-dimensional turbulence , 1993 .

[5]  R. Balian,et al.  From Microphysics to Macrophysics: Methods and Applications of Statistical Physics , 1992 .

[6]  H. Touchette Equivalence and Nonequivalence of the Microcanonical and Canonical Ensembles: A Large Deviations Study , 2003 .

[7]  A soluble model for a system with negative specific heat , 1971 .

[8]  Violation of ensemble equivalence in the antiferromagnetic mean-field XY model , 2000, cond-mat/0002005.

[9]  Thierry Dauxois,et al.  Dynamics and thermodynamics of systems with long-range interactions , 2002 .

[10]  B. M. Fulk MATH , 1992 .

[11]  Negative specific heat in a Lennard-Jones-like gas with long-range interactions , 2001, cond-mat/0109504.

[12]  D. Lynden-Bell,et al.  NEGATIVE SPECIFIC HEAT IN ASTRONOMY, PHYSICS AND CHEMISTRY , 1998, cond-mat/9812172.

[13]  R. Tyrrell Rockafellar,et al.  Convex Analysis , 1970, Princeton Landmarks in Mathematics and Physics.

[14]  W. Thirring Quantum Mathematical Physics , 2002 .

[15]  On first-order phase transitions in microcanonical and canonical non-extensive systems , 2001, cond-mat/0101311.

[16]  W. Thirring,et al.  Systems with negative specific heat , 1970 .

[17]  R. Ellis,et al.  Entropy, large deviations, and statistical mechanics , 1985 .

[18]  H. Touchette,et al.  Thermodynamic versus statistical nonequivalence of ensembles for the mean-field Blume–Emery–Griffiths model , 2003, cond-mat/0307007.

[19]  F. Reif,et al.  Fundamentals of Statistical and Thermal Physics , 1965 .

[20]  S. Ruffo,et al.  Inequivalence of ensembles in a system with long-range interactions. , 2001, Physical review letters.

[21]  S. Ruffo,et al.  First- and second-order clustering transitions for a system with infinite-range attractive interaction. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  E. M.,et al.  Statistical Mechanics , 2021, Manual for Theoretical Chemistry.

[23]  M. Reiner,et al.  The Deborah Number , 1964 .

[24]  R. Ellis,et al.  Nonequivalent statistical equilibrium ensembles and refined stability theorems for most probable flows , 2000, math-ph/0012022.

[25]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[26]  J. Bouchaud An introduction to statistical finance , 2002 .

[27]  W. Thirring,et al.  Quantum mathematical physics : atoms, molecules and large systems , 2002 .

[28]  Large Deviation Principles and Complete Equivalence and Nonequivalence Results for Pure and Mixed Ensembles , 2000, math/0012081.

[29]  J. Gibbs Elementary Principles in Statistical Mechanics , 1902 .

[30]  J. Lebowitz,et al.  The Micro-Canonical Point Vortex Ensemble: Beyond Equivalence , 1997 .

[31]  B. Turkington,et al.  ANALYSIS OF STATISTICAL EQUILIBRIUM MODELS OF GEOSTROPHIC TURBULENCE , 2002 .

[32]  Astronomer Royal,et al.  The gravo-thermal catastrophe in isothermal spheres and the onset of red-giant structure for stellar systems , 1968 .

[33]  D. Gross,et al.  Microcanonical Thermodynamics: Phase Transitions in 'Small' Systems , 2001 .