Three-dimensional inversion of airborne time-domain electromagnetic data with applications to a porphyry deposit

We inverted airborne time-domain electromagnetic (ATEM) data over a porphyry deposit in central British Columbia, Canada and recovered the 3D electrical conductivity structure. Full 3D inversion was required because of the circular geometry of the deposit. Typical analysis, which assumes a homogeneous or layered earth, produces conductive artifacts that are contrary to geologic expectations. A synthetic example showed that those misleading artifacts arise by assuming a 1D layered earth and that a 3D inversion can successfully solve the problem. Because of the computational challenges of solving the 3D inversion with many transmitters of airborne survey, we introduced a work flow that uses a multimesh strategy to handle the field data. In our inversion, a coarse mesh and a small number of soundings are first used to rapidly reconstruct a large-scale distribution of conductivity. The mesh is then refined and more soundings are incorporated to better resolve small-scale features. This strategy significantly ...

[1]  G. Palacky,et al.  QUANTITATIVE INTERPRETATION OF INPUT AEM MEASUREMENTS , 1973 .

[2]  Daniel Sattel,et al.  Inverting airborne electromagnetic (AEM) data with Zohdy's method , 2005 .

[3]  Malcolm Sambridge,et al.  A holistic approach to inversion of time-domain airborne EM , 2006 .

[4]  Douglas W. Oldenburg,et al.  Inversion of time domain three‐dimensional electromagnetic data , 2007 .

[5]  G. Palacky,et al.  10. Airborne Electromagnetic Methods , 1991 .

[6]  Douglas W. Oldenburg,et al.  Forward Modelling And Inversion of Multi-Source TEM Data , 2008 .

[7]  D. C. Fraser Resistivity mapping with an airborne multicoil electromagnetic system , 1978 .

[8]  Michael Commer,et al.  New advances in three dimensional transient electromagnetic inversion , 2004 .

[9]  Glenn A. Wilson,et al.  2.5D inversion of airborne electromagnetic data , 2006 .

[10]  Deep conductor delineation through improved EMFlow data processing , 2010 .

[11]  Michael Commer,et al.  A parallel finite-difference approach for 3D transient electromagnetic modeling with galvanic sources , 2004 .

[12]  A. Raiche Practical 3D airborne EM inversion in complex terranes , 2004 .

[13]  P. Wolfgram,et al.  Conductivity-depth transform of GEOTEM data , 1995 .

[14]  D. Sattel,et al.  Approximate 2D Inversion of AEM Data , 2003 .

[15]  James Macnae,et al.  Fast AEM data processing and inversion , 1998 .

[16]  C. P. Jago Metal- and alteration-zoning, and hydrothermal flow paths at the moderately-tilted, silica-saturated Mt. Milligan copper-gold alkalic porphyry deposit , 2008 .

[17]  Patrick Amestoy,et al.  Hybrid scheduling for the parallel solution of linear systems , 2006, Parallel Comput..

[18]  Michael S. Zhdanov,et al.  3D inversion of airborne electromagnetic data using a moving footprint , 2010 .

[19]  Caleb Plunkett,et al.  An example of 3D conductivity mapping using the TEMPEST airborne electromagnetic system , 2000 .

[20]  D. Oldenburg,et al.  Inversion of geophysical data over a copper gold porphyry deposit; a case history for Mt. Milligan , 1997 .

[21]  P. Keating,et al.  The inversion of time-domain airborne electromagnetic data using the plate model , 1990 .

[22]  Douglas W. Oldenburg,et al.  Inversion of time-domain electromagnetic data for a horizontally layered Earth , 1993 .

[23]  Application of an improved technique for interpreting transient electromagnetic data , 1998 .

[24]  Marc A. Vallée,et al.  Inversion of airborne time-domain electromagnetic data to a 1D structure using lateral constraints , 2009 .

[25]  G. J. Palacky,et al.  Use of airborne electromagnetic methods for resource mapping , 1993 .

[26]  James Macnae,et al.  6. Time Domain Electromagnetic Prospecting Methods , 1991 .

[27]  James E. Reid,et al.  Emax conductivity-depth transformation of airborne TEM data , 2001 .