Well-balanced bicharacteristic-based scheme for multilayer shallow water flows including wet/dry fronts

The aim of this paper is to present a new well-balanced finite volume scheme for two-dimensional multilayer shallow water flows including wet/dry fronts. The ideas, presented here for the two-layer model, can be generalized to a multilayer case in a straightforward way. The method developed here is constructed in the framework of the Finite Volume Evolution Galerkin (FVEG) schemes. The FVEG methods couple a finite volume formulation with evolution operators. The latter are constructed using the bicharacteristics of multidimensional hyperbolic systems. However, in the case of multilayer shallow water flows the required eigenstructure of the underlying equations is not readily available. Thus we approximate the evolution operators numerically. This approximation procedure can be used for arbitrary hyperbolic systems. We derive a well-balanced approximation of the evolution operators and prove that the FVEG scheme is well-balanced for the multilayer lake at rest states even in the presence of wet/dry fronts. Several numerical experiments confirm the reliability and efficiency of the new well-balanced FVEG scheme.

[1]  Michael J. Briggs,et al.  Laboratory experiments of tsunami runup on a circular island , 1995 .

[2]  Mária Lukácová-Medvid'ová,et al.  Well-balanced finite volume evolution Galerkin methods for the shallow water equations , 2015, J. Comput. Phys..

[3]  Carlos Parés,et al.  On the well-balance property of Roe?s method for nonconservative hyperbolic systems , 2004 .

[4]  Manuel Jesús Castro Díaz,et al.  Finite Volume Simulation of the Geostrophic Adjustment in a Rotating Shallow-Water System , 2008, SIAM J. Sci. Comput..

[5]  Carlos Parés,et al.  Path-Conservative Numerical Schemes for Nonconservative Hyperbolic Systems , 2008 .

[6]  Phoolan Prasad,et al.  Nonlinear Hyperbolic Waves in Multidimensions , 2001 .

[7]  Manuel Jesús Castro Díaz,et al.  Available Online at Www.sciencedirect.com Mathematical and So,snos ~__d,~ot" Computer Modelling the Numerical Treatment of Wet/dry Fronts in Shallow Flows: Application to One-layer and Two-layer Systems , 2022 .

[8]  Rémi Abgrall,et al.  A comment on the computation of non-conservative products , 2010, J. Comput. Phys..

[9]  Mária Lukácová-Medvid'ová,et al.  Finite Volume Evolution Galerkin Methods for Hyperbolic Systems , 2004, SIAM J. Sci. Comput..

[10]  Manuel Jesús Castro Díaz,et al.  Why many theories of shock waves are necessary: Convergence error in formally path-consistent schemes , 2008, J. Comput. Phys..

[11]  Manuel Jesús Castro Díaz,et al.  High Order Extensions of Roe Schemes for Two-Dimensional Nonconservative Hyperbolic Systems , 2009, J. Sci. Comput..

[12]  Rémi Abgrall,et al.  Two-Layer Shallow Water System: A Relaxation Approach , 2009, SIAM J. Sci. Comput..

[13]  G. D. Maso,et al.  Definition and weak stability of nonconservative products , 1995 .

[14]  Tim Kröger,et al.  Multidimensional systems of hyperbolic conservation laws, numerical schemes, and characteristic theory : connections, differences, and numerical comparison , 2004 .

[15]  Manuel Jesús Castro Díaz,et al.  On an Intermediate Field Capturing Riemann Solver Based on a Parabolic Viscosity Matrix for the Two-Layer Shallow Water System , 2011, J. Sci. Comput..

[16]  Carlos Parés,et al.  On the hyperbolicity of two- and three-layer shallow water equations , 2010 .

[17]  L. V. Ovsyannikov Two-layer “Shallow water” model , 1979 .

[18]  Alexander Kurganov,et al.  Central-Upwind Schemes for Two-Layer Shallow Water Equations , 2009, SIAM J. Sci. Comput..

[19]  J. B. Schijf,et al.  Theoretical considerations on the motion of salt and fresh water , 1953 .

[20]  Vladimir Zeitlin,et al.  A robust well-balanced scheme for multi-layer shallow water equations , 2010 .

[21]  Mária Lukácová-Medvid'ová,et al.  Evolution Galerkin methods for hyperbolic systems in two space dimensions , 2000, Math. Comput..

[22]  Sebastian Noelle,et al.  Finite Volume Evolution Galerkin Methods for the Shallow Water Equations with Dry Beds , 2011, 1501.03628.

[23]  Tomás Morales de Luna,et al.  Mathematical Modelling and Numerical Analysis an Entropy Satisfying Scheme for Two-layer Shallow Water Equations with Uncoupled Treatment , 2022 .

[24]  Manuel Jesús Castro Díaz,et al.  Numerical Treatment of the Loss of Hyperbolicity of the Two-Layer Shallow-Water System , 2011, J. Sci. Comput..

[25]  Manuel Jesús Castro Díaz,et al.  High order finite volume schemes based on reconstruction of states for solving hyperbolic systems with nonconservative products. Applications to shallow-water systems , 2006, Math. Comput..

[26]  Gerald Warnecke,et al.  Finite volume evolution Galerkin methods for nonlinear hyperbolic systems , 2002 .

[27]  Carlos Parés,et al.  A Q-SCHEME FOR A CLASS OF SYSTEMS OF COUPLED CONSERVATION LAWS WITH SOURCE TERM. APPLICATION TO A TWO-LAYER 1-D SHALLOW WATER SYSTEM , 2001 .

[28]  Mária Lukácová-Medvid'ová,et al.  Finite volume evolution Galerkin method for hyperbolic conservation laws with spatially varying flux functions , 2009, J. Comput. Phys..

[29]  G. Petrova,et al.  A SECOND-ORDER WELL-BALANCED POSITIVITY PRESERVING CENTRAL-UPWIND SCHEME FOR THE SAINT-VENANT SYSTEM ∗ , 2007 .

[30]  E. Audusse,et al.  A multilayer Saint-Venant model: Derivation and numerical validation , 2005 .

[31]  C. Parés Numerical methods for nonconservative hyperbolic systems: a theoretical framework. , 2006 .

[32]  Tim Kröger,et al.  An evolution Galerkin scheme for the shallow water magnetohydrodynamic equations in two space dimensions , 2005 .

[33]  Fayssal Benkhaldoun,et al.  Multilayer Saint-Venant equations over movable beds , 2011 .

[34]  F. Marche Derivation of a new two-dimensional viscous shallow water model with varying topography, bottom friction and capillary effects , 2007 .

[35]  Gerald Warnecke,et al.  On Evolution Galerkin Methods for the Maxwell and the Linearized Euler Equations , 2004 .