Computational model of articular cartilage regeneration induced by scaffold implantation in vivo.

[1]  C. Kawcak,et al.  The Importance of Subchondral Bone in the Pathophysiology of Osteoarthritis , 2018, Front. Vet. Sci..

[2]  C. Carda,et al.  Biostable Scaffolds of Polyacrylate Polymers Implanted in the Articular Cartilage Induce Hyaline-Like Cartilage Regeneration in Rabbits , 2017, The International journal of artificial organs.

[3]  Diego Correa,et al.  Articular cartilage repair: Current needs, methods and research directions. , 2017, Seminars in cell & developmental biology.

[4]  S. Vokes,et al.  An interdigit signalling centre instructs coordinate phalanx-joint formation governed by 5′Hoxd–Gli3 antagonism , 2016, Nature Communications.

[5]  Jerry C. Hu,et al.  Cell-based tissue engineering strategies used in the clinical repair of articular cartilage. , 2016, Biomaterials.

[6]  E. Hohmann,et al.  Large osteochondral lesions of the femoral condyles: Treatment with fresh frozen and irradiated allograft using the Mega OATS technique. , 2016, The Knee.

[7]  J. Mayo,et al.  On the Use of Bone Remodelling Models to Estimate the Density Distribution of Bones. Uniqueness of the Solution , 2016, PloS one.

[8]  D. Bergstrom,et al.  A mathematical model and computational framework for three‐dimensional chondrocyte cell growth in a porous tissue scaffold placed inside a bi‐directional flow perfusion bioreactor , 2015, Biotechnology and bioengineering.

[9]  C. Carda,et al.  Implantation of a Polycaprolactone Scaffold with Subchondral Bone Anchoring Ameliorates Nodules Formation and Other Tissue Alterations , 2015, The International journal of artificial organs.

[10]  C. V. van Donkelaar,et al.  Meniscus replacement: Influence of geometrical mismatches on chondroprotective capabilities. , 2015, Journal of biomechanics.

[11]  C. Carda,et al.  Time Evolution of in Vivo Articular Cartilage Repair Induced by Bone Marrow Stimulation and Scaffold Implantation in Rabbits , 2015, The International journal of artificial organs.

[12]  Maurilio Marcacci,et al.  Scaffold-based cartilage treatments: with or without cells? A systematic review of preclinical and clinical evidence. , 2015, Arthroscopy : the journal of arthroscopic & related surgery : official publication of the Arthroscopy Association of North America and the International Arthroscopy Association.

[13]  C. V. van Donkelaar,et al.  A tissue adaptation model based on strain-dependent collagen degradation and contact-guided cell traction. , 2015, Journal of biomechanics.

[14]  Jinxi Wang,et al.  Cell-based articular cartilage repair: the link between development and regeneration. , 2015, Osteoarthritis and cartilage.

[15]  M. Hossain,et al.  Modelling and simulation of the chondrocyte cell growth, glucose consumption and lactate production within a porous tissue scaffold inside a perfusion bioreactor☆ , 2014, Biotechnology reports.

[16]  M. Doblaré,et al.  A coupled mechano-biochemical model for bone adaptation , 2014, Journal of mathematical biology.

[17]  B. van Rietbergen,et al.  Bone remodelling in humans is load-driven but not lazy , 2014, Nature Communications.

[18]  P. Torzilli,et al.  A biphasic multiscale study of the mechanical microenvironment of chondrocytes within articular cartilage under unconfined compression. , 2014, Journal of biomechanics.

[19]  Melissa L. Knothe Tate,et al.  Mechanistic, Mathematical Model to Predict the Dynamics of Tissue Genesis in Bone Defects via Mechanical Feedback and Mediation of Biochemical Factors , 2014, PLoS Comput. Biol..

[20]  H. Van Oosterwyck Computational mechanobiology: may the force be with you , 2014, Journal of Mathematical Biology.

[21]  F. Guilak,et al.  A vision on the future of articular cartilage repair. , 2014, European cells & materials.

[22]  L Vikingsson,et al.  An "in vitro" experimental model to predict the mechanical behavior of macroporous scaffolds implanted in articular cartilage. , 2014, Journal of the mechanical behavior of biomedical materials.

[23]  J. Weiss,et al.  Osteochondritis dissecans of the knee: pathoanatomy, epidemiology, and diagnosis. , 2014, Clinics in sports medicine.

[24]  Hanna Isaksson,et al.  A Review of the Combination of Experimental Measurements and Fibril-Reinforced Modeling for Investigation of Articular Cartilage and Chondrocyte Response to Loading , 2013, Comput. Math. Methods Medicine.

[25]  Tze-Hung Lin,et al.  Computational modeling of nutrient utilization in engineered cartilage , 2013, Biotechnology progress.

[26]  W. Herzog,et al.  Computational aspects in mechanical modeling of the articular cartilage tissue , 2013, Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine.

[27]  Mika E Mononen,et al.  Implementation of subject‐specific collagen architecture of cartilage into a 2D computational model of a knee joint—data from the osteoarthritis initiative (OAI) , 2013, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[28]  G. Vunjak‐Novakovic,et al.  Time-Dependent Processes in Stem Cell-Based Tissue Engineering of Articular Cartilage , 2012, Stem Cell Reviews and Reports.

[29]  M. Marcacci,et al.  New trends for knee cartilage regeneration: from cell-free scaffolds to mesenchymal stem cells , 2012, Current Reviews in Musculoskeletal Medicine.

[30]  Hanna Isaksson,et al.  Recent advances in mechanobiological modeling of bone regeneration , 2012 .

[31]  A. Ramírez-Martínez,et al.  Numerical test concerning bone mass apposition under electrical and mechanical stimulus , 2012, Theoretical Biology and Medical Modelling.

[32]  Dorian Luis Linero Segrera,et al.  A model of cerebral cortex formation during fetal development using reaction-diffusion-convection equations with Turing space parameters , 2011, Comput. Methods Programs Biomed..

[33]  Damien Lacroix,et al.  Simulation of fracture healing in the tibia: Mechanoregulation of cell activity using a lattice modeling approach , 2011, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[34]  Xiongbiao Chen,et al.  Mechanical properties of natural cartilage and tissue-engineered constructs. , 2011, Tissue engineering. Part B, Reviews.

[35]  Patrick J. Prendergast,et al.  Mechanical Influences on Morphogenesis of the Knee Joint Revealed through Morphological, Molecular and Computational Analysis of Immobilised Embryos , 2011, PloS one.

[36]  Sara Checa,et al.  Effect of cell seeding and mechanical loading on vascularization and tissue formation inside a scaffold: a mechano-biological model using a lattice approach to simulate cell activity. , 2010, Journal of biomechanics.

[37]  M. Hincke,et al.  Strategies for articular cartilage lesion repair and functional restoration. , 2010, Tissue engineering. Part B, Reviews.

[38]  D. Saris,et al.  Treatment Selection in Articular Cartilage Lesions of the Knee , 2009, The American journal of sports medicine.

[39]  D. A. Garzón-Alvarado,et al.  A reaction–diffusion model for long bones growth , 2009, Biomechanics and modeling in mechanobiology.

[40]  Manuel Doblaré,et al.  Appearance and location of secondary ossification centres may be explained by a reaction-diffusion mechanism , 2009, Comput. Biol. Medicine.

[41]  Hanna Isaksson,et al.  Sensitivity of tissue differentiation and bone healing predictions to tissue properties. , 2009, Journal of biomechanics.

[42]  Rik Huiskes,et al.  A mechano-regulatory bone-healing model incorporating cell-phenotype specific activity. , 2008, Journal of theoretical biology.

[43]  Li Shi,et al.  A mathematical model for simulating the bone remodeling process under mechanical stimulus. , 2007, Dental materials : official publication of the Academy of Dental Materials.

[44]  E. Hunziker,et al.  The structural architecture of adult mammalian articular cartilage evolves by a synchronized process of tissue resorption and neoformation during postnatal development. , 2007, Osteoarthritis and cartilage.

[45]  C C van Donkelaar,et al.  Prediction of collagen orientation in articular cartilage by a collagen remodeling algorithm. , 2006, Osteoarthritis and cartilage.

[46]  D. W. Jackson,et al.  Articular Cartilage: Injury Pathways and Treatment Options , 2018, Sports medicine and arthroscopy review.

[47]  Rik Huiskes,et al.  Corroboration of mechanoregulatory algorithms for tissue differentiation during fracture healing: comparison with in vivo results , 2006, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[48]  J. L. Gómez Ribelles,et al.  Response of human chondrocytes to a non-uniform distribution of hydrophilic domains on poly (ethyl acrylate-co-hydroxyethyl methacrylate) copolymers. , 2006, Biomaterials.

[49]  Sandra J Shefelbine,et al.  Trabecular bone fracture healing simulation with finite element analysis and fuzzy logic. , 2005, Journal of biomechanics.

[50]  Gong He,et al.  The application of topology optimization on the quantitative description of the external shape of bone structure. , 2005, Journal of biomechanics.

[51]  P J Prendergast,et al.  Mechano-regulation of stem cell differentiation and tissue regeneration in osteochondral defects. , 2005, Journal of biomechanics.

[52]  W Wilson,et al.  A fibril-reinforced poroviscoelastic swelling model for articular cartilage. , 2005, Journal of biomechanics.

[53]  J M Huyghe,et al.  A comparison between mechano-electrochemical and biphasic swelling theories for soft hydrated tissues. , 2005, Journal of biomechanical engineering.

[54]  Marcy Wong,et al.  The mechanobiology of articular cartilage development and degeneration. , 2004, Clinical orthopaedics and related research.

[55]  R Huiskes,et al.  Stresses in the local collagen network of articular cartilage: a poroviscoelastic fibril-reinforced finite element study. , 2004, Journal of biomechanics.

[56]  Juha Töyräs,et al.  Fibril reinforced poroelastic model predicts specifically mechanical behavior of normal, proteoglycan depleted and collagen degraded articular cartilage. , 2003, Journal of biomechanics.

[57]  P. Prendergast,et al.  A mechano-regulation model for tissue differentiation during fracture healing: analysis of gap size and loading. , 2002, Journal of biomechanics.

[58]  P J Prendergast,et al.  Three-dimensional Simulation of Fracture Repair in the Human Tibia , 2002, Computer methods in biomechanics and biomedical engineering.

[59]  A Shirazi-Adl,et al.  Nonlinear analysis of cartilage in unconfined ramp compression using a fibril reinforced poroelastic model. , 1999, Clinical biomechanics.

[60]  Dennis R. Carter,et al.  Mechanobiology of Skeletal Regeneration , 1998, Clinical orthopaedics and related research.

[61]  L. Claes,et al.  Magnitudes of local stress and strain along bony surfaces predict the course and type of fracture healing. , 1998, Journal of biomechanics.

[62]  R. Huiskes,et al.  Biophysical stimuli on cells during tissue differentiation at implant interfaces , 1997 .

[63]  P J Prendergast,et al.  Microdamage and osteocyte-lacuna strain in bone: a microstructural finite element analysis. , 1996, Journal of biomechanical engineering.

[64]  P J Prendergast,et al.  Prediction of bone adaptation using damage accumulation. , 1994, Journal of biomechanics.

[65]  M J Glimcher,et al.  Cell origin and differentiation in the repair of full-thickness defects of articular cartilage. , 1993, The Journal of bone and joint surgery. American volume.

[66]  D. A. Garzón-Alvarado,et al.  Growth plate stress distribution implications during bone development: A simple framework computational approach , 2015, Comput. Methods Programs Biomed..

[67]  Maurilio Marcacci,et al.  Scaffold-based repair for cartilage healing: a systematic review and technical note. , 2013, Arthroscopy : the journal of arthroscopic & related surgery : official publication of the Arthroscopy Association of North America and the International Arthroscopy Association.

[68]  Rik Huiskes,et al.  Bone regeneration during distraction osteogenesis: mechano-regulation by shear strain and fluid velocity. , 2007, Journal of biomechanics.

[69]  Patrick J Prendergast,et al.  Bone remodelling algorithms incorporating both strain and microdamage stimuli. , 2007, Journal of biomechanics.

[70]  Nigel Arden,et al.  Osteoarthritis: epidemiology. , 2006, Best practice & research. Clinical rheumatology.

[71]  Rik Huiskes,et al.  Comparison of biophysical stimuli for mechano-regulation of tissue differentiation during fracture healing. , 2006, Journal of biomechanics.

[72]  D. Lacroix,et al.  Biomechanical model to simulate tissue differentiation and bone regeneration: Application to fracture healing , 2006, Medical and Biological Engineering and Computing.

[73]  A. Benninghoff,et al.  Form und Bau der Gelenkknorpel in ihren Beziehungen zur Funktion , 2004, Zeitschrift für Zellforschung und Mikroskopische Anatomie.

[74]  F. Pauwels,et al.  Eine neue Theorie über den Einfluß mechanischer Reize auf die Differenzierung der Stützgewebe , 2004, Zeitschrift für Anatomie und Entwicklungsgeschichte.

[75]  E K Antonsson,et al.  The frequency content of gait. , 1985, Journal of biomechanics.