A posteriori error analysis of Euler-Galerkin approximations to coupled elliptic-parabolic problems

We analyze Euler-Galerkin approximations (conforming finite elements in space and im- plicit Euler in time) to coupled PDE systems in which one dependent variable, say u ,i s governed by an elliptic equation and the other, say p, by a parabolic-like equation. The underlying application is the poroelasticity system within the quasi-static assumption. Different polynomial orders are used for the u -a ndp-components to obtain optimally convergent ap rioribounds for all the terms in the error energy norm. Then, a residual-type a posteriori error analysis is performed. Upon extending the ideas of Verfurth for the heat equation (Calcolo 40 (2003) 195-212), an optimally convergent bound is derived for the dominant term in the error energy norm and an equivalence result between residual and error is proven. The error bound can be classically split into time error, space error and data oscillation terms. Moreover, upon extending the elliptic reconstruction technique introduced by Makridakis and Nochetto (SIAM J. Numer. Anal. 41 (2003) 1585-1594), an optimally convergent bound is derived for the remaining terms in the error energy norm. Numerical results are presented to illustrate the theoretical analysis.

[1]  M. Biot General Theory of Three‐Dimensional Consolidation , 1941 .

[2]  K. Terzaghi Theoretical Soil Mechanics , 1943 .

[3]  M. Wheeler A Priori L_2 Error Estimates for Galerkin Approximations to Parabolic Partial Differential Equations , 1973 .

[4]  P. Clément Approximation by finite element functions using local regularization , 1975 .

[5]  L. R. Scott,et al.  Finite element interpolation of nonsmooth functions satisfying boundary conditions , 1990 .

[6]  Kenneth Eriksson,et al.  Adaptive finite element methods for parabolic problems. I.: a linear model problem , 1991 .

[7]  Abimael F. D. Loula,et al.  Improved accuracy in finite element analysis of Biot's consolidation problem , 1992 .

[8]  F. Bornemann,et al.  A Posteriori Error Estimates for Elliptic Problems. , 1993 .

[9]  Abimael F. D. Loula,et al.  On stability and convergence of finite element approximations of biot's consolidation problem , 1994 .

[10]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .

[11]  Kenneth Eriksson,et al.  Adaptive finite element methods for parabolic problems II: optimal error estimates in L ∞ L 2 and L ∞ L ∞ , 1995 .

[12]  Rüdiger Verführt,et al.  A review of a posteriori error estimation and adaptive mesh-refinement techniques , 1996, Advances in numerical mathematics.

[13]  Vidar Thomée,et al.  Asymptotic behavior of semidiscrete finite-element approximations of Biot's consolidation problem , 1996 .

[14]  Rüdiger Verfürth,et al.  A posteriori error estimates for nonlinear problems. Lr(0, T; Lrho(Omega))-error estimates for finite element discretizations of parabolic equations , 1998, Math. Comput..

[15]  M. Picasso Adaptive finite elements for a linear parabolic problem , 1998 .

[16]  R. Showalter Diffusion in Poro-Elastic Media , 2000 .

[17]  Miloslav Feistauer,et al.  On one approach to a posteriori error estimates for evolution problems solved by the method of lines , 2001, Numerische Mathematik.

[18]  Rolf Rannacher,et al.  An optimal control approach to a posteriori error estimation in finite element methods , 2001, Acta Numerica.

[19]  R. Verfiirth A posteriori error estimation and adaptive mesh-refinement techniques , 2001 .

[20]  R. Showalter Diffusion in deformable media , 2002 .

[21]  Ricardo H. Nochetto,et al.  Elliptic reconstruction and a posteriori error estimates for fully discrete linear parabolic problems , 2006, Math. Comput..

[22]  Rüdiger Verfürth,et al.  A posteriori error estimates for finite element discretizations of the heat equation , 2003 .

[23]  J. Guermond,et al.  Theory and practice of finite elements , 2004 .

[24]  Jia Feng,et al.  An adaptive finite element algorithm with reliable and efficient error control for linear parabolic problems , 2004, Math. Comput..

[25]  Christine Bernardi,et al.  A posteriori analysis of the finite element discretization of some parabolic equations , 2004, Math. Comput..

[26]  Omar Lakkis,et al.  Elliptic reconstruction and a posteriori error estimates for fully discrete linear parabolic problems , 2006, Math. Comput..

[27]  Sébastien Meunier Analyse d'erreur a postériori pour les couplages hydro-mécaniques et mise en oeuvre dans code_aster , 2007 .