cGAS-mediated induction of type I interferon due to inborn errors of histone pre-mRNA processing

[1]  T. Molina,et al.  Mutations in COPA lead to abnormal trafficking of STING to the Golgi and interferon signaling , 2020, The Journal of experimental medicine.

[2]  Y. Crow,et al.  Analysis of U8 snoRNA Variants in Zebrafish Reveals How Bi-allelic Variants Cause Leukoencephalopathy with Calcifications and Cysts. , 2020, American journal of human genetics.

[3]  Elizabeth E Gray,et al.  Tight nuclear tethering of cGAS is essential for preventing autoreactivity , 2019, eLife.

[4]  N. Jouvenet,et al.  Stimulation of Innate Immunity by Host and Viral RNAs. , 2019, Trends in immunology.

[5]  P. Sung,et al.  Chromatin‐bound cGAS is an inhibitor of DNA repair and hence accelerates genome destabilization and cell death , 2019, The EMBO journal.

[6]  N. Manel,et al.  The N-Terminal Domain of cGAS Determines Preferential Association with Centromeric DNA and Innate Immune Activation in the Nucleus , 2019, Cell reports.

[7]  N. Manel,et al.  The N-Terminal Domain of cGAS Determines Preferential Association with Centromeric DNA and Innate Immune Activation in the Nucleus , 2019, Cell reports.

[8]  Y. Crow,et al.  Self-Awareness: Nucleic Acid-Driven Inflammation and the Type I Interferonopathies. , 2019, Annual review of immunology.

[9]  S. Kaufmann,et al.  Nuclear cGAS suppresses DNA repair and promotes tumorigenesis , 2018, Nature.

[10]  Matteo Gentili,et al.  NONO Detects the Nuclear HIV Capsid to Promote cGAS-Mediated Innate Immune Activation , 2018, Cell.

[11]  M. Spehlmann,et al.  Absence of RNase H2 triggers generation of immunogenic micronuclei removed by autophagy , 2017, Human molecular genetics.

[12]  M. Esteller,et al.  Histone H1 depletion triggers an interferon response in cancer cells via activation of heterochromatic repeats , 2017, Nucleic acids research.

[13]  H. Funabiki,et al.  The Cytoplasmic DNA Sensor cGAS Promotes Mitotic Cell Death , 2019, Cell.

[14]  Martin A. M. Reijns,et al.  cGAS surveillance of micronuclei links genome instability to innate immunity , 2017, Nature.

[15]  Dennis E Discher,et al.  Mitotic progression following DNA damage enables pattern recognition within micronuclei , 2017, Nature.

[16]  Zhijian J. Chen,et al.  cGAS is essential for cellular senescence , 2017, Proceedings of the National Academy of Sciences.

[17]  Zhijian J. Chen,et al.  Regulation and function of the cGAS–STING pathway of cytosolic DNA sensing , 2016, Nature Immunology.

[18]  V. Hornung,et al.  Recognition of Endogenous Nucleic Acids by the Innate Immune System. , 2016, Immunity.

[19]  Jan Lammerding,et al.  Nuclear envelope rupture and repair during cancer cell migration , 2016, Science.

[20]  R. Voituriez,et al.  ESCRT III repairs nuclear envelope ruptures during cell migration to limit DNA damage and cell death , 2016, Science.

[21]  Y. Crow,et al.  Aicardi–Goutières syndrome and the type I interferonopathies , 2015, Nature Reviews Immunology.

[22]  Steven L Salzberg,et al.  HISAT: a fast spliced aligner with low memory requirements , 2015, Nature Methods.

[23]  W. Huber,et al.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.

[24]  L. Lagae,et al.  Gain-of-function mutations in IFIH1 cause a spectrum of human disease phenotypes associated with upregulated type I interferon signaling , 2014, Nature Genetics.

[25]  Daniel R. Zerbino,et al.  Ensembl 2014 , 2013, Nucleic Acids Res..

[26]  A. Vanderver,et al.  Assessment of interferon-related biomarkers in Aicardi-Goutières syndrome associated with mutations in TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, and ADAR: a case-control study , 2013, The Lancet Neurology.

[27]  Z. Dominski,et al.  3′-End processing of histone pre-mRNAs in Drosophila: U7 snRNP is associated with FLASH and polyadenylation factors , 2013, RNA.

[28]  John H Livingston,et al.  Mutations in ADAR1 cause Aicardi-Goutières syndrome associated with a type I interferon signature , 2012, Nature Genetics.

[29]  G. Almouzni,et al.  A specific function for the histone chaperone NASP to fine-tune a reservoir of soluble H3-H4 in the histone supply chain. , 2011, Molecular cell.

[30]  Li Yang,et al.  Genomewide characterization of non-polyadenylated RNAs , 2011, Genome Biology.

[31]  Aaron R. Quinlan,et al.  BIOINFORMATICS APPLICATIONS NOTE , 2022 .

[32]  Jonathan C. Fuller,et al.  Mutations involved in Aicardi-Goutières syndrome implicate SAMHD1 as regulator of the innate immune response , 2009, Nature Genetics.

[33]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[34]  C. Peterson,et al.  Chicken erythrocyte histone octamer preparation. , 2008, CSH protocols.

[35]  E. Wagner,et al.  Metabolism and regulation of canonical histone mRNAs: life without a poly(A) tail , 2008, Nature Reviews Genetics.

[36]  Z. Dominski,et al.  Formation of the 3' end of histone mRNA: getting closer to the end. , 2007, Gene.

[37]  James Allan,et al.  DNA methylation affects nuclear organization, histone modifications, and linker histone binding but not chromatin compaction , 2007, The Journal of cell biology.

[38]  C. Ponting,et al.  Mutations in genes encoding ribonuclease H2 subunits cause Aicardi-Goutières syndrome and mimic congenital viral brain infection , 2006, Nature Genetics.

[39]  D. Barnes,et al.  Mutations in the gene encoding the 3′-5′ DNA exonuclease TREX1 cause Aicardi-Goutières syndrome at the AGS1 locus , 2006, Nature Genetics.

[40]  J. Steitz,et al.  In vivo assembly of functional U7 snRNP requires RNA backbone flexibility within the Sm-binding site , 2006, Nature Structural &Molecular Biology.

[41]  M. Burns,et al.  Case-Control Study , 2020, Definitions.

[42]  James Allan,et al.  Formation of facultative heterochromatin in the absence of HP1 , 2003, The EMBO journal.

[43]  Utz Fischer,et al.  Unique Sm core structure of U7 snRNPs: assembly by a specialized SMN complex and the role of a new component, Lsm11, in histone RNA processing. , 2003, Genes & development.

[44]  William F Marzluff,et al.  The human and mouse replication-dependent histone genes. , 2002, Genomics.

[45]  Tom H. Pringle,et al.  The human genome browser at UCSC. , 2002, Genome research.

[46]  Z. Dominski,et al.  Drosophila stem loop binding protein coordinates accumulation of mature histone mRNA with cell cycle progression. , 2001, Genes & development.

[47]  Müller,et al.  The U7 snRNP and the hairpin binding protein: Key players in histone mRNA metabolism. , 1997, Seminars in cell & developmental biology.

[48]  A. Schaller,et al.  The gene for histone RNA hairpin binding protein is located on human chromosome 4 and encodes a novel type of RNA binding protein , 1997, The EMBO journal.

[49]  M. Whitfield,et al.  The protein that binds the 3' end of histone mRNA: a novel RNA-binding protein required for histone pre-mRNA processing. , 1996, Genes & development.

[50]  J. Allan,et al.  Reversible dissociation of linker histone from chromatin with preservation of internucleosomal repeat. , 1980, Proceedings of the National Academy of Sciences of the United States of America.