Langevin dynamics with constraints and computation of free energy differences

In this paper, we consider Langevin processes with mechanical constraints. The latter are a fundamental tool in molecular dynamics simulation for sampling purposes and for the computation of free energy differences. The results of this paper can be divided into three parts. (i) We propose a simple discretization of the constrained Langevin process based on a standard splitting strategy. We show how to correct the scheme so that it samples {\em exactly} the canonical measure restricted on a submanifold, using a Metropolis rule in the spirit of the Generalized Hybrid Monte Carlo (GHMC) algorithm. Moreover, we obtain, in some limiting regime, a consistent discretization of the overdamped Langevin (Brownian) dynamics on a submanifold, also sampling exactly the correct canonical measure with constraints. The corresponding numerical methods can be used to sample (without any bias) a probability measure supported by a submanifold. (ii) For free energy computation using thermodynamic integration, we rigorously prove that the longtime average of the Lagrange multipliers of the constrained Langevin dynamics yields the gradient of a rigid version of the free energy associated with the constraints. A second order time discretization using the Lagrange multipliers is proposed. (iii) The Jarzynski-Crooks fluctuation relation is proved for Langevin processes with mechanical constraints evolving in time. An original numerical discretization without time-step error is proposed. Numerical illustrations are provided for (ii) and (iii).

[1]  B. Berne,et al.  Molecular dynamics study of an isomerizing diatomic in a Lennard‐Jones fluid , 1988 .

[2]  手塚明則 Blue‐moon samplingによる変形経路の解析 , 2005 .

[3]  D. C. Rapaport,et al.  The Art of Molecular Dynamics Simulation , 1997 .

[4]  Carsten Hartmann,et al.  Comment on two distinct notions of free energy , 2007 .

[5]  A. Horowitz A generalized guided Monte Carlo algorithm , 1991 .

[6]  Gabriel Stoltz,et al.  Computation of free energy differences through nonequilibrium stochastic dynamics: The reaction coordinate case , 2007, J. Comput. Phys..

[7]  B. Leimkuhler,et al.  Symplectic Numerical Integrators in Constrained Hamiltonian Systems , 1994 .

[8]  Stephen S. Wilson,et al.  Random iterative models , 1996 .

[9]  M. V. Tretyakov,et al.  Stochastic Numerics for Mathematical Physics , 2004, Scientific Computation.

[10]  Eric Vanden-Eijnden,et al.  Second-order integrators for Langevin equations with holonomic constraints , 2006 .

[11]  K. Gawȩdzki,et al.  Fluctuation Relations for Diffusion Processes , 2007, 0707.2725.

[12]  G. Ciccotti,et al.  Blue moon sampling, vectorial reaction coordinates, and unbiased constrained dynamics. , 2005, Chemphyschem : a European journal of chemical physics and physical chemistry.

[13]  M. Fixman,et al.  Simulation of polymer dynamics. I. General theory , 1978 .

[14]  Sebastian Reich,et al.  Smoothed Langevin dynamics of highly oscillatory systems , 2000 .

[15]  Christoph Dellago,et al.  On the calculation of reaction rate constants in the transition path ensemble , 1999 .

[16]  J. Marsden,et al.  Introduction to mechanics and symmetry , 1994 .

[17]  Houman Owhadi,et al.  Long-Run Accuracy of Variational Integrators in the Stochastic Context , 2007, SIAM J. Numer. Anal..

[18]  Sebastian Reich,et al.  GSHMC: An efficient method for molecular simulation , 2008, J. Comput. Phys..

[19]  G. Crooks Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[20]  L. Ambrosio,et al.  Functions of Bounded Variation and Free Discontinuity Problems , 2000 .

[21]  E. Hairer,et al.  Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .

[22]  E. Vanden-Eijnden,et al.  Metastability, conformation dynamics, and transition pathways in complex systems , 2004 .

[23]  G. Crooks Nonequilibrium Measurements of Free Energy Differences for Microscopically Reversible Markovian Systems , 1998 .

[24]  W. Kliemann Recurrence and invariant measures for degenerate diffusions , 1987 .

[25]  K. Schulten,et al.  Free energy calculation from steered molecular dynamics simulations using Jarzynski's equality , 2003 .

[26]  E. Hairer,et al.  Geometric Numerical Integration , 2022, Oberwolfach Reports.

[27]  V. Arnold Mathematical Methods of Classical Mechanics , 1974 .

[28]  H. Owhadi,et al.  Long-Run Behavior of Variational Integrators in the Stochastic Context , 2009 .

[29]  L. Hörmander Hypoelliptic second order differential equations , 1967 .

[30]  Jürgen Schlitter,et al.  A new concise expression for the free energy of a reaction coordinate , 2003 .

[31]  Carsten Hartmann,et al.  A GEOMETRIC APPROACH TO CONSTRAINED MOLECULAR DYNAMICS AND FREE ENERGY , 2005 .

[32]  W. D. Otter,et al.  Thermodynamic integration of the free energy along a reaction coordinate in Cartesian coordinates , 2000 .

[33]  C. Jarzynski Nonequilibrium Equality for Free Energy Differences , 1996, cond-mat/9610209.

[34]  Eric Vanden Eijnden,et al.  Metastability, conformation dynamics, and transition pathways in complex systems , 2004 .

[35]  S. Duane,et al.  Hybrid Monte Carlo , 1987 .

[36]  David D L Minh,et al.  Optimized free energies from bidirectional single-molecule force spectroscopy. , 2008, Physical review letters.

[37]  G. Ciccotti,et al.  Projection of diffusions on submanifolds: Application to mean force computation , 2008 .

[38]  B. Leimkuhler,et al.  Simulating Hamiltonian Dynamics , 2005 .

[39]  Carsten Hartmann,et al.  Free energy computation by controlled Langevin processes , 2010 .

[40]  S. Ethier,et al.  Markov Processes: Characterization and Convergence , 2005 .

[41]  L. Evans Measure theory and fine properties of functions , 1992 .

[42]  Paul Adrien Maurice Dirac,et al.  Generalized Hamiltonian dynamics , 1958, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[43]  Carsten Hartmann,et al.  An Ergodic Sampling Scheme for Constrained Hamiltonian Systems with Applications to Molecular Dynamics , 2008 .

[44]  Paul B. Mackenze An Improved Hybrid Monte Carlo Method , 1989 .

[45]  Eric F Darve Thermodynamic Integration Using Constrained and Unconstrained Dynamics , 2007 .

[46]  T. Lelièvre,et al.  Free Energy Computations: A Mathematical Perspective , 2010 .

[47]  G. N. Milstein,et al.  Quasi‐symplectic methods for Langevin‐type equations , 2003 .

[48]  Carsten Hartmann,et al.  A constrained hybrid Monte‐Carlo algorithm and the problem of calculating the free energy in several variables , 2005 .

[49]  T. Schlick Molecular modeling and simulation , 2002 .