Ultranarrow coupling-induced transparency bands in hybrid plasmonic systems

Plasmons in nanoscale structures represent an exciting new route toward efficient manipulation of photons, especially at subwavelength scales. Of particular interest are the hybridized plasmonic systems, in which the interaction among the plasmonic elements can be utilized to tailor the optical responses. Here we demonstrate a hybridized plasmonic-waveguide system exhibiting behavior similar to that of the electromagnetically induced transparency; namely, an ultranarrow transmission line width arising from a coupling-induced cancellation of the plasmonic resonance.

[1]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[2]  T. Gaylord,et al.  Rigorous coupled-wave analysis of planar-grating diffraction , 1981 .

[3]  Michael Vollmer,et al.  Optical properties of metal clusters , 1995 .

[4]  Y. Wang,et al.  Plasmon-induced transparency in metamaterials. , 2008, Physical review letters.

[5]  K. Kawano,et al.  Introduction to Optical Waveguide Analysis , 2001 .

[6]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[7]  M. W. Klein,et al.  Correlation effects in disordered metallic photonic crystal slabs. , 2007, Physical review letters.

[8]  U. Chettiar,et al.  Negative index of refraction in optical metamaterials. , 2005, Optics letters.

[9]  L. Solymar,et al.  Pulse delay and propagation through subwavelength metallic slits. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[10]  H. Giessen,et al.  Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab. , 2003, Physical review letters.

[11]  V. Kravets,et al.  Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles. , 2008, Physical review letters.

[12]  T. Zentgraf,et al.  Dynamics and dephasing of plasmon polaritons in metallic photonic crystal superlattices : Time-and frequency-resolved nonlinear autocorrelation measurements and simulations , 2007 .

[13]  T. Zentgraf,et al.  Tailoring the ultrafast dephasing of quasiparticles in metallic photonic crystals. , 2004, Physical review letters.

[14]  X. Zhang,et al.  A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation , 2008 .

[15]  F. García-Vidal,et al.  Transmission Resonances on Metallic Gratings with Very Narrow Slits , 1999, cond-mat/9904365.

[16]  T. Zentgraf,et al.  Metallodielectric photonic crystal superlattices: Influence of periodic defects on transmission properties , 2006 .

[17]  P. Nordlander,et al.  A Hybridization Model for the Plasmon Response of Complex Nanostructures , 2003, Science.

[18]  S. Linden,et al.  Controlling the interaction between light and gold nanoparticles: selective suppression of extinction. , 2001, Physical review letters.

[19]  Lechner,et al.  Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance , 2000, Physical review letters.

[20]  Harald Giessen,et al.  Plasmon Hybridization in Stacked Cut‐Wire Metamaterials , 2007 .

[21]  Robert W. Boyd,et al.  Photonics: Transparency on an optical chip , 2006, Nature.

[22]  Harald Giessen,et al.  Optical properties of planar metallic photonic crystal structures: Experiment and theory , 2004 .