Numerical simulations and experimental results of tensile behaviour of hybrid composite shape memory alloy wires embedded structures

The shape memory alloys (SMA) possess both sensing and actuating functions due to their shape memory effect, pseudo-elasticity, high damping capability and other remarkable properties. Combining the SMA with other materials can create intelligent or smart composites. The epoxy resin composites filled with Ti-Ni alloys wires were fabricated, and their mechanical properties have been investigated. In this study, stress/strain relationships for a composite with embedded SMA wires are presented. The paper illustrates influence of the SMA wires upon changes in mechanical behaviour of a composite plate with the SMA components, firstly and secondly, the actuating ability and reliability of shape memory alloy hybrid composites.

[1]  L. M. Sim,et al.  Through-the-thickness mechanical properties of smart quasi-isotropic carbon/epoxy laminates , 2004 .

[2]  M. Taya,et al.  Thermomechanical behavior of TiNi shape memory alloy fiber reinforced 6061 aluminum matrix composite , 1998 .

[3]  M. Sahli,et al.  Characterisation and modelling of behaviour of a shape memory alloys , 2014 .

[4]  Yang Yang,et al.  3D printing of shape memory polymer for functional part fabrication , 2016 .

[5]  Tyler Halbert,et al.  Numerically validated reduced-order model for laminates containing shape memory alloy wire meshes , 2016 .

[6]  H. Chan,et al.  Fine-grained BaZr[sub 0.2]Ti[sub 0.8]O₃ thin films for tunable device applications , 2007 .

[7]  Takeshi Okuyama,et al.  Thermal control of shape memory alloy artificial anal sphincters for complete implantation , 2005 .

[8]  J. Roberts,et al.  NiTi and NiTi-TiC composites: Part IV. Neutron diffraction study of twinning and shape-memory recovery , 1996 .

[9]  Dongyang Li,et al.  Improvement in wear resistance of TiNi-based composites by hot isostatic pressing , 2002 .

[10]  Michael W. Hyer,et al.  SMA-induced snap-through of unsymmetric fiber-reinforced composite laminates , 2003 .

[11]  Guojun Sun,et al.  Thermo-viscoelastic bending analysis of a shape memory alloy hybrid epoxy beam , 2002 .

[12]  H. Maier,et al.  One-way shape memory effect due to stress-assisted magnetic field-induced phase transformation in Ni2MnGa magnetic shape memory alloys , 2006 .

[13]  P. Liaw,et al.  Crystal structures and textures in the hot-forged Ni-Mn-Ga shape memory alloys , 2006 .

[14]  Gunther Eggeler,et al.  Structural fatigue of pseudoelastic NiTi shape memory wires , 2004 .

[15]  Marcelo A. Savi,et al.  A constitutive model for shape memory alloys considering tensile¿compressive asymmetry and plasticity , 2005 .

[16]  Scott R. White,et al.  Thermomechanical behavior of 55Ni45Ti nitinol , 1996 .

[17]  Kenichi Hamada,et al.  Processing of TiNi SMA fiber reinforced AZ31 Mg alloy matrix composite by pulsed current hot pressing , 2004 .

[18]  J. Ro,et al.  Thermal post-buckling and aeroelastic behaviour of shape memory alloy reinforced plates , 2002 .

[19]  F. Fernandes,et al.  Analyzing mechanical properties and nondestructive characteristics of brazed joints of NiTi shape memory alloys to carbon steel rods , 2013 .

[20]  K. Chawla,et al.  Metal Matrix Composites , 2006 .

[21]  S. Miyazaki,et al.  Shape memory materials and hybrid composites for smart systems: Part II Shape-memory hybrid composites , 1998 .

[22]  Z. G. Wang,et al.  Temperature memory effect in TiNi-based shape memory alloys , 2005 .

[23]  Chin-Kun Hu,et al.  Recovery stresses generated by NiTi shape memory wires under different constraint conditions , 2003 .

[24]  Blythe G. Clark,et al.  On the plasticity of small-scale nickel–titanium shape memory alloys , 2010 .

[25]  Amir Khajepour,et al.  Finite Element Modeling of Shape Memory Alloy Composite Actuators: Theory and Experiment , 2001 .

[26]  X. Ren,et al.  Physical metallurgy of Ti–Ni-based shape memory alloys , 2005 .

[27]  Lien-Wen Chen,et al.  Dynamic stability of a shape memory alloy wire reinforced composite beam , 2002 .

[28]  Shuichi Miyazaki,et al.  Deformation and transition behavior associated with theR-phase in Ti-Ni alloys , 1986 .

[29]  Haluk E. Karaca,et al.  Magnetic field and stress induced martensite reorientation in NiMnGa ferromagnetic shape memory alloy single crystals , 2006 .

[30]  Sudhakar A. Kulkarni,et al.  Natural frequencies of a multilayer SMA laminated composite cantilever plate , 2006 .

[31]  Ren Yongsheng,et al.  Large Amplitude Flexural Vibration of the Orthotropic Composite Plate Embedded with Shape Memory Alloy Fibers , 2007 .

[32]  Le-Chung Shiau,et al.  Buckling analysis of shape memory alloy reinforced composite laminates , 2009 .

[33]  W. Zaki,et al.  A review of constitutive models and modeling techniques for shape memory alloys , 2016 .

[34]  J. Schrooten,et al.  Temperature memory effect of a nickel-titanium shape memory alloy , 2004 .

[35]  Shuichi Miyazaki,et al.  Mechanism of the As temperature increase by pre-deformation in thermoelastic alloys , 1993 .

[36]  Akira Shimamoto,et al.  Fatigue crack propagation and local crack-tip strain behavior in TiNi shape memory fiber reinforced composite , 2004 .

[37]  Tae-Hee Shin,et al.  An evaluation of the machinability of nitinol shape memory alloy by electrochemical polishing , 2011 .

[38]  John A. Shaw,et al.  Tips and tricks for characterizing shape memory alloy wire: Part 1—differential scanning calorimetry and basic phenomena , 2008 .

[39]  Kin-tak Lau,et al.  Design of pull-out stresses for prestrained SMA wire/polymer hybrid composites , 2005 .

[40]  C. M. Wayman,et al.  Microstructure and martensitic transformations in a dual-phase α/β Cu−Zn alloy , 1999 .

[41]  Ashwin Rao,et al.  Design of multi-state and smart-bias components using Shape Memory Alloy and Shape Memory Polymer composites , 2013 .

[42]  K. V. Van Vliet,et al.  Predicting in vivo failure of pseudoelastic NiTi devices under low cycle, high amplitude fatigue. , 2005, Journal of biomedical materials research. Part B, Applied biomaterials.

[43]  S. Nenno,et al.  EFFECTS OF HEAT TREATMENT ON MECHANICAL BEHAVIOR OF Ti-Ni ALLOYS , 1982 .

[44]  Ken Gall,et al.  Thermal processing of polycrystalline NiTi shape memory alloys , 2005 .

[45]  Hisaaki Tobushi,et al.  Novel shape memory actuators , 2011 .

[46]  Jan Schrooten,et al.  Comparison between generation of recovery stresses in shape memory wires and composites: theory and reality , 2001, SPIE Micro + Nano Materials, Devices, and Applications.

[47]  R. Kuppuswamy,et al.  High-speed micromachining characteristics for the NiTi shape memory alloys , 2017 .

[48]  Yang-Tse Cheng,et al.  Finite element modeling of indentation-induced superelastic effect using a three-dimensional constitutive model for shape memory materials with plasticity , 2007 .

[49]  Dongyang Li Development of novel tribo composites with TiNi shape memory alloy matrix , 2003 .

[50]  H. Tobushi,et al.  Bending Actuation Characteristics of Shape Memory Composite with SMA and SMP , 2006 .

[51]  E. Cesari,et al.  Effect of precipitates on the stress–strain behavior under compression in polycrystalline Ni–Fe–Ga alloys , 2008 .

[52]  T. Nam,et al.  Phase transformation behaviours of Ti-Ni-Cu shape memory alloy powders fabricated by mechanical alloying , 1998 .

[53]  P. Curtis,et al.  A smart repair system for polymer matrix composites , 2001 .

[54]  G. Hu,et al.  Stress transfer for a SMA fiber pulled out from an elastic matrix and related bridging effect , 2005 .

[55]  S. Shi,et al.  Interfacial debond of shape memory alloy composites , 2005 .

[56]  M. Kawai,et al.  Micromechamical Analysis for Hysteretic Behavior of Unidirectional TiNi SMA Fiber Composites , 1999 .

[57]  Matthew P. Cartmell,et al.  One-dimensional shape memory alloy models for use with reinforced composite structures , 2003 .

[58]  Y. Mai,et al.  Theoretical modelling of the effect of plasticity on reverse transformation in superelastic shape memory alloys , 2003 .

[59]  Xu Lei,et al.  The optimization of annealing and cold-drawing in the manufacture of the Ni–Ti shape memory alloy ultra-thin wire , 2011 .

[60]  Yong Liu,et al.  Criteria for pseudoelasticity in near-equiatomic NiTi shape memory alloys , 1997 .

[61]  H. Ishii,et al.  Deformation Behavior of NiTi/Polymer Shape Memory Alloy Composites – Experimental Verifications , 2004 .

[62]  M. Taya,et al.  Reduction in KI by Shape Memory Effect in a TiNi Shape-Memory Fiber-Reinforced Epoxy Matrix Composite. Dependency of Stress Intensity Factor on Crack-tip Domain Size. , 1999 .

[63]  Rolf Lammering,et al.  Stress-induced transformation behavior of a polycrystalline NiTi shape memory alloy: micro and macromechanical investigations via in situ optical microscopy , 2004 .

[64]  C. M. Wayman,et al.  Shape-Memory Materials , 2018 .

[65]  H. Abé,et al.  Analysis of an edge crack in a semi-infinite composite with a long reinforced phase , 1984 .

[66]  Atsushi Sasaki,et al.  Enhanced Mechanical Properties of TiNi Shape Memory Fiber/Al Matrix Composite , 1993 .

[67]  F. Gandhi,et al.  Characterization of the pseudoelastic damping behavior of shape memory alloy wires using complex modulus , 1999 .

[68]  Hyo Jik Lee,et al.  A numerical analysis of the buckling and postbuckling behavior of laminated composite shells with embedded shape memory alloy wire actuators , 2000 .

[69]  R. Lammering,et al.  Finite Element Analysis of the Behavior of Shape Memory Alloys and their Applications. , 1993 .

[70]  Victor Birman,et al.  Review of Mechanics of Shape Memory Alloy Structures , 1997 .