A hierarchy of tree-automatic structures

We consider $\omega^n$-automatic structures which are relational structures whose domain and relations are accepted by automata reading ordinal words of length $\omega^n$ for some integer $n\geq 1$. We show that all these structures are $\omega$-tree-automatic structures presentable by Muller or Rabin tree automata. We prove that the isomorphism relation for $\omega^2$-automatic (resp. $\omega^n$-automatic for $n>2$) boolean algebras (respectively, partial orders, rings, commutative rings, non commutative rings, non commutative groups) is not determined by the axiomatic system ZFC. We infer from the proof of the above result that the isomorphism problem for $\omega^n$-automatic boolean algebras, $n > 1$, (respectively, rings, commutative rings, non commutative rings, non commutative groups) is neither a $\Sigma_2^1$-set nor a $\Pi_2^1$-set. We obtain that there exist infinitely many $\omega^n$-automatic, hence also $\omega$-tree-automatic, atomless boolean algebras $B_n$, $n\geq 1$, which are pairwise isomorphic under the continuum hypothesis CH and pairwise non isomorphic under an alternate axiom AT, strengthening a result of [FT10].

[1]  Olivier Carton,et al.  An Eilenberg Theorem for Words on Countable Ordinals , 1998, LATIN.

[2]  Greg Hjorth,et al.  From Automatic Structures to Borel Structures , 2008, 2008 23rd Annual IEEE Symposium on Logic in Computer Science.

[3]  I. Farah ALL AUTOMORPHISMS OF THE CALKIN ALGEBRA ARE INNER , 2007, 0705.3085.

[4]  Anil Nerode,et al.  Open Questions in the Theory of Automatic Structures , 2008, Bull. EATCS.

[5]  Achim Blumensath,et al.  Automatic structures , 2000, Proceedings Fifteenth Annual IEEE Symposium on Logic in Computer Science (Cat. No.99CB36332).

[6]  R. Schindler Descriptive Set Theory , 2014 .

[7]  Nicolas Bedon,et al.  Finite Automata and Ordinals , 1996, Theor. Comput. Sci..

[8]  Sasha Rubin,et al.  Automatic Structures: Overview and Future Directions , 2003, J. Autom. Lang. Comb..

[9]  Jean-Eric Pin,et al.  Infinite words - automata, semigroups, logic and games , 2004, Pure and applied mathematics series.

[10]  F. Stephan,et al.  Set theory , 2018, Mathematical Statistics with Applications in R.

[11]  M. Rabin Decidability of second-order theories and automata on infinite trees , 1968 .

[12]  Markus Lohrey,et al.  The Isomorphism Problem for omega-Automatic Trees , 2010, CSL.

[13]  Sasha Rubin,et al.  Automata Presenting Structures: A Survey of the Finite String Case , 2008, Bulletin of Symbolic Logic.

[14]  Ilijas Farah,et al.  Analytic Quotients: Theory of Liftings for Quotients over Analytic Ideals on the Integers , 2000 .

[15]  André Nies,et al.  Automatic structures: richness and limitations , 2004, Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science, 2004..

[16]  Olivier Finkel,et al.  The isomorphism relation between tree-automatic Structures , 2010, ArXiv.

[17]  André Nies,et al.  Describing Groups , 2007, Bulletin of Symbolic Logic.

[18]  B. Poizat A Course in Model Theory , 2000 .

[19]  J. R. Büchi,et al.  The monadic second order theory of all countable ordinals , 1973 .

[20]  Stevo Todorcevic Gaps in analytic quotients , 1998 .

[21]  Oleg V. Belegradek The Model Theory of Unitriangular Groups , 1994, Ann. Pure Appl. Log..

[22]  Olivier Finkel,et al.  Computer science and the fine structure of Borel sets , 2001, Theor. Comput. Sci..

[23]  Dietrich Kuske Is Ramsey's theorem omega-automatic? , 2010, STACS.

[24]  Markus Lohrey,et al.  First-order and counting theories of omega-automatic structures , 2006, J. Symb. Log..

[25]  M. W. Shields An Introduction to Automata Theory , 1988 .

[26]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[27]  Markus Lohrey,et al.  The Isomorphism Problem on Classes of Automatic Structures , 2010, 2010 25th Annual IEEE Symposium on Logic in Computer Science.

[28]  Olivier Finkel Locally finite languages , 2001, Theor. Comput. Sci..

[29]  B. Poizat,et al.  A Course in Model Theory: An Introduction to Contemporary Mathematical Logic , 2000 .

[30]  Michel Talagrand Compacts de fonctions mesurables et filtres non mesurables , 1980 .

[31]  I. Farah,et al.  Luzin Gaps , 2003 .

[32]  Ludwig Staiger,et al.  Ω-languages , 1997 .

[33]  Stevo Todorcevic,et al.  Partition Problems In Topology , 1989 .

[34]  Achim Blumensath,et al.  Finite Presentations of Infinite Structures: Automata and Interpretations , 2004, Theory of Computing Systems.

[35]  A Weak Version of at from OCA , 1992 .

[36]  D. Kuske,et al.  First-order and counting theories of ω-automatic structures , 2008, Journal of Symbolic Logic.

[37]  Thomas Wilke,et al.  Automata logics, and infinite games: a guide to current research , 2002 .

[38]  Thomas Wilke,et al.  Automata Logics, and Infinite Games , 2002, Lecture Notes in Computer Science.

[39]  Wolfgang Thomas,et al.  Automata on Infinite Objects , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[40]  Nicolas Bedon Logic over Words on Denumerable Ordinals , 2001, J. Comput. Syst. Sci..

[41]  A modification of Shelah’s oracle-c.c. with applications , 1992 .