Rate constant estimation for C1 to C4 alkyl and alkoxyl radical decomposition

Rate coefficients for alkyl and alkoxy radical decomposition are important in combustion, biological, and atmospheric processes. In this paper, rate constant expressions for C1C4 alkyl and alkoxy radicals decomposition via β-scission are recommended based on the reverse, exothermic reaction, the addition of a hydrogen atom or an alkyl radical to an olefin or carbonyl species with the decomposition reaction calculated using microscopic reversibility. The rate expressions have been estimated based on a wide-range study of available experimental data. Rate coefficients for hydrogen atom and alkyl radical addition to an olefin show a strong temperature curvature. In addition, it is found that there is a correlation between the activation energy for addition and (i) the type of atom undergoing addition and (ii) whether this radical adds to the internal or terminal carbon atom of the olefin. Rate coefficients for alkoxy radical decomposition show a strong correlation to the ionization potential of the alkyl radical leaving group and on the enthalpy of reaction. It is shown that the activation energy for alkyl radical addition to a carbonyl species can be estimated as a function of the alkyl radical ionization potential and enthalpy of reaction. © 2006 Wiley Periodicals, Inc. Int J Chem Kinet 38: 250–275, 2006

[1]  D. Golden,et al.  Alkoxy radical reactions: the isomerization of n-butoxy radicals generated from the pyrolysis of n-butyl nitrite , 1978 .

[2]  L. Batt,et al.  The gas‐phase pyrolysis of alkyl nitrites. IV. Ethyl nitrite , 1976 .

[3]  L. Batt Reactions of alkoxy and alkyl peroxy radicals , 1987 .

[4]  R. Atkinson Gas-phase tropospheric chemistry of organic compounds: a review , 1990 .

[5]  C. Fittschen,et al.  Complete falloff curves for the unimolecular decomposition of i-propoxy radicals between 330 and 408 K , 1999 .

[6]  H. Melville,et al.  The kinetics of the interaction of atomic hydrogen with olefines VI. An extension of the method and application to substituted olefines and aromatics , 1953, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[7]  N. C. Peterson,et al.  Temperature and Pressure Effects in the Addition of H Atoms to Propylene , 1971 .

[8]  Anthony M. Dean,et al.  HYDROGEN ATOM BOND INCREMENTS FOR CALCULATION OF THERMODYNAMIC PROPERTIES OF HYDROCARBON RADICAL SPECIES , 1995 .

[9]  S. Benson,et al.  Arrhenius parameters for the alkoxy radical decomposition reactions , 1981 .

[10]  M. H. Back,et al.  THE THERMAL DECOMPOSITION OF ETHANE: PART III. SECONDARY REACTIONS , 1966 .

[11]  R. Cvetanovic,et al.  Relative Rates of Addition of Hydrogen Atoms to Olefines , 1961 .

[12]  M. Pilling,et al.  Asymmetric internal rotation: Application to the2-C4H9CH3+C3H6reaction , 1997 .

[13]  A. Trotman‐Dickenson,et al.  323. The reactions of alkyl radicals. Part III. n-Butyl radicals from the photolysis of n-valeraldehyde , 1960 .

[14]  Raymond W. Walker,et al.  Evaluated kinetic data for combustion modelling supplement I , 1994 .

[15]  J. Calvert,et al.  The Photolysis of Azo-n-propane; the Decomposition of the n-Propyl Radical , 1961 .

[16]  F. Baronnet,et al.  Influences of ClH and BrH on the pyrolyses of neopentane and ethane at small extents of reaction , 1977 .

[17]  D. Gutman,et al.  Weak collision effects in the reaction C2H5 ⇌ C2H4 + H , 1993 .

[18]  M. Koshi,et al.  Thermal Decomposition and Isomerization Processes of Alkyl Radicals , 1999 .

[19]  V. Schubert,et al.  Bestimmung kinetischer Isotopieeffekte der Additionsreaktion des Wasserstoffatoms an Äthylen und Propen mit Hilfe der Pulsradiolyse , 1975 .

[20]  J. Michael,et al.  Reaction H+C2H4: Investigation into the effects of pressure, stoichiometry, and the nature of the third body species , 1973 .

[21]  K. Okazaki,et al.  The Rate Constants of the Reactions of Hydrogen and Oxygen Atoms with Fluoroethylenes , 1981 .

[22]  E. Ratajczak,et al.  Spectrokinetic studies of ethyl and ethylperoxy radicals , 1986 .

[23]  J. Peeters,et al.  A Generalized Structure-Activity Relationship for the Decomposition of (Substituted) Alkoxy Radicals , 2004 .

[24]  D. Golden,et al.  Photochemical smog. Rate parameter estimates and computer simulations , 1977 .

[25]  S. Benson,et al.  Pyrolysis of methyl chloride, a pathway in the chlorine-catalyzed polymerization of methane , 1984 .

[26]  H. Wagner,et al.  Reaktionen von Wasserstoffatomen mit ungesättigten C3-Kohlenwasserstoffen. I. Die Reaktion von H-Atomen mit Propylen , 1972 .

[27]  Wing Tsang,et al.  Critical Review of rate constants for reactions of hydrated electronsChemical Kinetic Data Base for Combustion Chemistry. Part 3: Propane , 1988 .

[28]  P. Camilleri,et al.  Arrhenius parameters for the unimolecular decompositions of azomethane and n-propyl and isopropyl radicals and for methyl radical attack on propane , 1975 .

[29]  W. Carter,et al.  Reactions of alkoxy radicals under atmospheric conditions: The relative importance of decomposition versus reaction with O2 , 1991 .

[30]  Michael J. Pilling,et al.  Temperature and pressure dependence of the rate constant for the addition of hydrogen atoms to ethylene , 1987 .

[31]  K. Homann,et al.  J. A. Kerr and M. J. Parsonage: Evaluated Kinetic Data on Gas Phase Addition Reactions. Reactions of Atoms and Radicals with Alkenes, Alkynes and Aromatic Compounds. Butterworths, London 1972, 384 S., Preis: £12.00 , 1973, Berichte der Bunsengesellschaft für physikalische Chemie.

[32]  R. Irwin,et al.  Rates of Addition of Methyl Radicals to Olefins in the Gas Phase , 1967 .

[33]  B. Viskolcz,et al.  The β C–C bond scission in alkoxy radicals: thermal unimolecular decomposition of t-butoxy radicals , 2000 .

[34]  R. Atkinson Atmospheric reactions of alkoxy and ?-hydroxyalkoxy radicals , 1997 .

[35]  W. Carter,et al.  Atmospheric chemistry of alkanes , 1985 .

[36]  L. Batt,et al.  Arrhenius parameters for the decomposition of the t-butoxy radical , 1982 .

[37]  W. A. Payne,et al.  Absolute rate of the reaction of atomic hydrogen with ethylene from 198 to 320 K at high pressure , 1978 .

[38]  D. Gutman,et al.  Experimental and theoretical study of the sec-C[sub 4]H[sub 9] [r reversible] CH[sub 3] + C[sub 3]H[sub 6] reaction , 1994 .

[39]  P. Camilleri,et al.  Arrhenius Parameters for the System (CH3)3Si + D2 ⇄ (CH3)3SiD + D. The (CH3)3Si — D Bond Dissociation Energy , 1981 .

[40]  W. Green,et al.  Oxygenate, oxyalkyl and alkoxycarbonyl thermochemistry and rates for hydrogen abstraction from oxygenates , 2003 .

[41]  P. Kebarle,et al.  Addition of Methyl Radicals to Vinyl Chloride and Catalysis of Di-t-butyl Peroxide Decomposition by Chlorinated Compounds , 1964 .

[42]  J. Walton,et al.  Free radical addition to olefins. Part 9.—Addition of methyl radicals to fluoro-ethylenes , 1972 .

[43]  J. Warnatz Rate Coefficients in the C/H/O System , 1984 .

[44]  F. Márta,et al.  Kinetics of the decomposition of neo-pentane sensitized by azoisopropane , 1975 .

[45]  K. Laidler,et al.  KINETICS OF THE DECOMPOSITIONS OF ETHANE AND PROPANE SENSITIZED BY AZOMETHANE: THE DECOMPOSITION OF THE NORMAL PROPYL RADICAL , 1966 .

[46]  R. K. Brinton,et al.  Gaseous Reaction of Methyl Radicals with Propylene , 1962 .

[47]  T. Gierczak,et al.  Isomerization of chemically activated secondary butyl radical , 1988 .

[48]  Wing Tsang,et al.  Chemical Kinetic Data Base for Combustion Chemistry. Part I. Methane and Related Compounds , 1986 .

[49]  Y. Ishikawa,et al.  The Absolute Rate Constants of Reaction of Hydrogen Atoms with Several Olefins , 1978 .

[50]  T. Wallington,et al.  The atmospheric chemistry of alkoxy radicals. , 2003, Chemical reviews.

[51]  R. Zellner,et al.  Theoretical studies of unimolecular reactions of C2–C5 alkoxyl radicals. Part III. A microscopic structure activity relationship (SAR) , 2000 .

[52]  B. Viskolcz,et al.  The thermal unimolecular decomposition rate constants of ethoxy radicals , 1999 .

[53]  L. Seres,et al.  Thermal decomposition of di‐t‐butyl peroxide in the presence of (CH3)2CCH2: Reactions of CH3, (CH3)2ĊCH2CH3, and (CH3)2ĊCH2C(CH3)2CH2CH3 radicals , 1994 .

[54]  K. Okazaki,et al.  Kinetic isotope effects in the reaction H + C2H4 → C2H5 , 1981 .

[55]  J. Eyre,et al.  Pulse Radiolysis Studies. XX. Kinetics of Some Addition Reactions of Gaseous Hydrogen Atoms by Fast Lyman‐α Absorption Spectrophotometry , 1971 .

[56]  D. Gutman,et al.  Unimolecular decomposition of the neopentyl radical , 1991 .

[57]  J. Heicklen,et al.  Reactions of alkoxy radicals with O2. III. i‐C4H9O radicals , 1985 .

[58]  M. Hisham,et al.  Arrhenius parameters of elementary reactions involved in the oxidation of neopentane , 1982 .

[59]  I. R. Slagle,et al.  Unimolecular Decomposition of n-C4H9 and iso-C4H9 Radicals , 1996 .

[60]  R. Cvetanovic,et al.  Determination of rates of hydrogen atom reactions with alkenes at 298 K by a double modulation technique , 1979 .

[61]  J. Eyre,et al.  High‐Pressure Limiting Rate Constant for H‐Atom Addition to Ethylene , 1970 .

[62]  Michael J. Pilling,et al.  Evaluated Kinetic Data for Combustion Modelling , 1992 .

[63]  N. C. Peterson,et al.  Absolute Rates of the Reactions H+C2H4 and H+C2H5 , 1970 .

[64]  M. Pilling,et al.  Kinetics of the unimolecular decomposition of isopropyl: weak collision effects in helium, argon, and nitrogen , 1993 .

[65]  Edward R. Ritter,et al.  THERM: THERMODYNAMIC PROPERTY ESTIMATION FOR GAS PHASE RADICALS and MOLECULES , 1991, Proceeding of Data For Discovery.

[66]  J. Rayez,et al.  Theoretical study on the comparative fate of the 1-butoxy and β-hydroxy-1-butoxy radicals , 2000 .

[67]  D. H. Slater,et al.  Photolysis of 1,1'-azoisobutane vapor at 3660 A. Reactions of the isobutyl free radical , 1968 .

[68]  D. Gutman,et al.  Unimolecular Decomposition of t-C4H9 Radical , 1994 .

[69]  Roger Atkinson,et al.  Gas-Phase Tropospheric Chemistry of Volatile Organic Compounds: 1. Alkanes and Alkenes , 1997 .

[70]  D. Gutman,et al.  Kinetics of the thermal decomposition of the n-propyl radical , 1992 .

[71]  M. Pilling,et al.  Direct studies on the decomposition of the tert-butoxy radical and its reaction with NO , 1999 .

[72]  B. Viskolcz,et al.  Competition between alkyl radical addition to carbonyl bonds and H-atom abstraction reactions , 2002 .

[73]  J. Walton,et al.  The importance of polarity and steric effects in determining the rate and orientation of free radical addition to olefins , 1980 .

[74]  R. Marshall,et al.  The rate constant for t‐C4H9 → H + i‐C4H8 and the thermodynamic parameters of t‐C4H9 , 1981 .

[75]  L. Radom,et al.  Factors Controlling the Addition of Carbon-Centered Radicals to Alkenes-An Experimental and Theoretical Perspective. , 2001, Angewandte Chemie.

[76]  M. Pilling,et al.  Observation of equilibration in the system atomic hydrogen + ethylene .dblharw. ethyl. The determination of the heat of formation of ethyl radical , 1986 .

[77]  K. Okazaki,et al.  Temperature Dependence of the Rate Constants of H and D-Atom Additions to C2H4, C2H3D, C2D4, C2H2, and C2D2 , 1981 .

[78]  B. Viskolcz,et al.  A detailed experimental and theoretical study on the decomposition of methoxy radicals , 2001 .

[79]  A. Trotman‐Dickenson,et al.  980. The reactions of alkyl radicals. Part VIII. Isobutyl radicals from the photolysis of isovaleraldehyde , 1960 .

[80]  K. J. Mintz,et al.  Kinetics of radical reactions in sodium diffusion flames , 1978 .

[81]  Anthony M. Dean,et al.  Predictions of pressure and temperature effects upon radical addition and recombination reactions , 1985 .

[82]  Wing Tsang,et al.  Chemical kinetic data base for hydrocarbon pyrolysis , 1992 .

[83]  J. Calvert,et al.  The Photolysis of 1,1'-Azo-n-butane Vapor. The Reactions of the n-Butyl Free Radical1 , 1966 .

[84]  L. Batt,et al.  Pyrolysis of alkyl nitrites (RONO) , 1974 .

[85]  J. Calvert,et al.  A Kinetic Study of the n-Propyl Radical Decomposition Reaction , 1959 .

[86]  A. Sheppard,et al.  The rate constant for H + i‐C4H8 → t‐C4H9 in the range of 298–563 K , 1981 .

[87]  R. Penzhorn,et al.  Reaction of Hydrogen Atoms with C2H4 and C2D4 , 1971 .

[88]  W. Tsang The stability of alkyl radicals , 1985 .

[89]  R. J. Boyd,et al.  Alkoxy radicals in the gaseous phase: β-scission reactions and formation by radical addition to carbonyl compounds , 2003 .

[90]  F. Lovas,et al.  Microwave Spectra of Molecules of Astrophysical Interest: II Methylenimine , 1973 .

[91]  J. T. Maleissye,et al.  Reactions of primary and secondary butoxy radicals in oxygen at atmospheric pressure , 1991 .

[92]  R. Zellner,et al.  Theoretical studies of unimolecular reactions of C2–C5 alkoxy radicals. Part II. RRKM dynamical calculations , 2000 .

[93]  Toshifumi Watanabe,et al.  Arrhenius Parameters for the Reactions of Hydrogen and Deuterium Atoms with Four Butenes , 1983 .

[94]  Radical addition, decomposition, and isomerization reactions in the pyrolysis of ethane and ethylene , 1984 .

[95]  K. Laidler,et al.  Kinetics of the Mercury-Photosensitized Decomposition of Propane. Part II. Reactions of the Propyl Radicals , 1971 .

[96]  R. Zellner,et al.  Theoretical studies of unimolecular reactions of C2–C5 alkoxy radicals. Part I. Ab initio molecular orbital calculations , 2000 .

[97]  R. Gilbert,et al.  Theoretical Prediction of CH3O and CH2OH Gas-Phase Decomposition Rate Coefficients , 1986 .

[98]  S. Price,et al.  Studies of the pyrolysis of diethylzinc by the toluene carrier method and of the reaction of ethyl radicals with toluene , 1976 .

[99]  B. Ivanov,et al.  A measurement of formation rates and lifetimes of intermediate complexes in reversible chemical reactions involving hydrogen atoms , 1978 .

[100]  S. M. Aschmann,et al.  Products of the gas-phase reactions of the OH radical withn-butyl methyl ether and 2-isopropoxyethanol: Reactions of ROC(??) < radicals , 1999 .

[101]  A. Trotman‐Dickenson,et al.  The reactions of alkyl radicals. Part 1.—n-Propyl radicals from the photolysis of n-butyraldehyde , 1959 .

[102]  K. Laidler,et al.  Thermal decomposition of the ethyl radical , 1967 .

[103]  L. Batt The gas‐phase decomposition of alkoxy radicals , 1979 .

[104]  K. Laidler,et al.  Kinetics of the Mercury-Photosensitized Decomposition of Neopentane. Part II. Reactions of the Methyl and Neopentyl Radicals , 1972 .

[105]  J. Heicklen The Decomposition of Alkyl Nitrites and the Reactions of Alkoxyl Radicals , 2007 .

[106]  J. Rayez,et al.  Theoretical study of alkoxyl radical decomposition reactions: structure–activity relationships , 2000 .