Dynamic and Robust Local Clearance Triangulations

The Local Clearance Triangulation (LCT) of polygonal obstacles is a cell decomposition designed for the efficient computation of locally shortest paths with clearance. This article presents a revised definition of LCTs, new theoretical results and optimizations, and new algorithms introducing dynamic updates and robustness. Given an input obstacle set with n vertices, a theoretical analysis is proposed showing that LCTs generate a triangular decomposition of O(n) cells, guaranteeing that discrete search algorithms can compute paths in optimal times. In addition, several examples are presented indicating that the number of triangles is low in practice, close to 2n, and a new technique is described for reducing the number of triangles when the maximum query clearance is known in advance. Algorithms for repairing the local clearance property dynamically are also introduced, leading to efficient LCT updates for addressing dynamic changes in the obstacle set. Dynamic updates automatically handle intersecting and overlapping segments with guaranteed robustness, using techniques that combine one exact geometric predicate with adjustment of illegal floating-point coordinates. The presented results demonstrate that LCTs are efficient and highly flexible for representing dynamic polygonal environments with clearance information.

[1]  Nils J. Nilsson,et al.  A mobius automation: an application of artificial intelligence techniques , 1969, IJCAI 1969.

[2]  D. Thalmann,et al.  Fully Dynamic Constrained Delaunay Triangulations , 2004 .

[3]  Yunhui Liu,et al.  Finding the shortest path of a disc among polygonal obstacles using a radius-independent graph , 1995, IEEE Trans. Robotics Autom..

[4]  Maxim Likhachev,et al.  D*lite , 2002, AAAI/IAAI.

[5]  Mark H. Overmars,et al.  New methods for computing visibility graphs , 1988, SCG '88.

[6]  Michael Buro,et al.  Efficient Triangulation-Based Pathfinding , 2006, AAAI.

[7]  Demetri Terzopoulos,et al.  Autonomous pedestrians , 2005, SCA '05.

[8]  KallmannMarcelo Dynamic and Robust Local Clearance Triangulations , 2014 .

[9]  Stéphane Donikian,et al.  Crowd of Virtual Humans: a New Approach for Real Time Navigation in Complex and Structured Environments , 2004, Comput. Graph. Forum.

[10]  Dinesh Manocha,et al.  Fast computation of generalized Voronoi diagrams using graphics hardware , 1999, SIGGRAPH.

[11]  Joseph S. B. Mitchell,et al.  Shortest paths among obstacles in the plane , 1993, SCG '93.

[12]  Roland Geraerts,et al.  Planning short paths with clearance using explicit corridors , 2010, 2010 IEEE International Conference on Robotics and Automation.

[13]  Glenn Reinman,et al.  SteerBench: a benchmark suite for evaluating steering behaviors , 2009, Comput. Animat. Virtual Worlds.

[14]  Olivier Devillers,et al.  Walking in a triangulation , 2001, SCG '01.

[15]  James A. Storer,et al.  Shortest paths in the plane with polygonal obstacles , 1994, JACM.

[16]  Jean-Claude Latombe,et al.  Fast synthetic vision, memory, and learning models for virtual humans , 1999, Proceedings Computer Animation 1999.

[17]  Bernard Chazelle,et al.  A theorem on polygon cutting with applications , 1982, 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982).

[18]  John Hershberger,et al.  Computing Minimum Length Paths of a Given Homotopy Class (Extended Abstract) , 1991, WADS.

[19]  Subhash Suri,et al.  An Optimal Algorithm for Euclidean Shortest Paths in the Plane , 1999, SIAM J. Comput..

[20]  Olivier Devillers,et al.  Efficient Exact Geometric Predicates for Delauny Triangulations , 2003, ALENEX.

[21]  Tomás Lozano-Pérez,et al.  An algorithm for planning collision-free paths among polyhedral obstacles , 1979, CACM.

[22]  Sebastian Thrun,et al.  ARA*: Anytime A* with Provable Bounds on Sub-Optimality , 2003, NIPS.

[23]  Carl-Johan Jørgensen,et al.  From Geometry to Spatial Reasoning : Automatic Structuring of 3D Virtual Environments , 2011, MIG.

[24]  Nuria Pelechano,et al.  NEOGEN: Near optimal generator of navigation meshes for 3D multi-layered environments , 2013, Comput. Graph..

[25]  Fabrice Lamarche,et al.  TopoPlan: a topological path planner for real time human navigation under floor and ceiling constraints , 2009, Comput. Graph. Forum.

[26]  Dinesh Manocha,et al.  Real-Time Path Planning in Dynamic Virtual Environments Using Multiagent Navigation Graphs , 2008, IEEE Transactions on Visualization and Computer Graphics.

[27]  Joseph S. B. Mitchell,et al.  An Efficient Algorithm for Euclidean Shortest Paths Among Polygonal Obstacles in the Plane , 1997, Discret. Comput. Geom..

[28]  Jonathan Richard Shewchuk,et al.  Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator , 1996, WACG.

[29]  Mark de Berg,et al.  Computational geometry: algorithms and applications , 1997 .

[30]  Daniel Thalmann,et al.  Synthetic Vision and Audition for Digital Actors , 1995, Comput. Graph. Forum.

[31]  Jessica K. Hodgins,et al.  Reactive pedestrian path following from examples , 2004, The Visual Computer.

[32]  Dinesh Manocha,et al.  Reciprocal Velocity Obstacles for real-time multi-agent navigation , 2008, 2008 IEEE International Conference on Robotics and Automation.

[33]  Nils J. Nilsson,et al.  A Formal Basis for the Heuristic Determination of Minimum Cost Paths , 1968, IEEE Trans. Syst. Sci. Cybern..

[34]  Jonathan Richard Shewchuk,et al.  Adaptive Precision Floating-Point Arithmetic and Fast Robust Geometric Predicates , 1997, Discret. Comput. Geom..

[35]  Marcelo Kallmann Shortest paths with arbitrary clearance from navigation meshes , 2010, SCA '10.

[36]  Marina L. Gavrilova,et al.  Roadmap-Based Path Planning - Using the Voronoi Diagram for a Clearance-Based Shortest Path , 2008, IEEE Robotics & Automation Magazine.

[37]  Marina L. Gavrilova,et al.  Exact Computation of Delaunay and Power Triangulations , 2000, Reliab. Comput..

[38]  Dinesh Manocha,et al.  Interactive Navigation of Heterogeneous Agents Using Adaptive Roadmaps , 2009, IEEE Transactions on Visualization and Computer Graphics.

[39]  Jur P. van den Berg,et al.  The visibility--voronoi complex and its applications , 2005, EuroCG.

[40]  Nils J. Nilsson,et al.  A Mobile Automaton: An Application of Artificial Intelligence Techniques , 1969, IJCAI.

[41]  L. Paul Chew,et al.  Planning the shortest path for a disc in O(n2log n) time , 1985, SCG '85.

[42]  D. T. Lee,et al.  Euclidean shortest paths in the presence of rectilinear barriers , 1984, Networks.

[43]  Martin Held,et al.  VRONI: An engineering approach to the reliable and efficient computation of Voronoi diagrams of points and line segments , 2001, Comput. Geom..

[44]  John Hart,et al.  ACM Transactions on Graphics , 2004, SIGGRAPH 2004.