Application and Comparison of Robust Linear Regression Methods for Trend Estimation

In this study, robust parametric regression methods are applied to temperature and precipitation time series in Switzerland and the trend results are compared with trends from classical least squares (LS) regression and nonparametric approaches. It is found that in individual time series statistically outlying observations are present that influence the LS trend estimate severely. In some cases, these outlying observations lead to an over-/underestimation of the trends or even to a trend masking. In comparison with the classical LS method and standard nonparametric techniques, the use of robust methods yields more reliable trend estimations and outlier detection.

[1]  D. Helsel,et al.  Statistical methods in water resources , 2020, Techniques and Methods.

[2]  Willem A. Landman,et al.  Climate change 2007 : the physical science basis, S. Solomon, D. Qin, M. Manning, M. Marquis, K. Averyt, M.M.B. Tignor, H. LeRoy Miller, Jr. and Z. Chen (Eds.) : book review , 2010 .

[3]  José Julio Espina Agulló,et al.  The multivariate least-trimmed squares estimator , 2008 .

[4]  Y. Heyden,et al.  Robust statistics in data analysis — A review: Basic concepts , 2007 .

[5]  S. Seneviratne,et al.  Land–atmosphere coupling and climate change in Europe , 2006, Nature.

[6]  Ingo Wegener,et al.  Modified repeated median filters , 2006, Stat. Comput..

[7]  Ursula Gather,et al.  Repeated median and hybrid filters , 2006, Comput. Stat. Data Anal..

[8]  Maria Eduarda Silva,et al.  Nonlinear sea level trends from European tide gauge records , 2006 .

[9]  J. Mikšovský,et al.  Testing for nonlinearity in European climatic time series by the method of surrogate data , 2006 .

[10]  J. Norris Trends in upper‐level cloud cover and surface divergence over the tropical Indo‐Pacific Ocean between 1952 and 1997 , 2005 .

[11]  C. Schönwiese,et al.  A generalized method of time series decomposition into significant components including probability assessments of extreme events and application to observational German precipitation data , 2005 .

[12]  Stefan Van Aelst,et al.  Fast and robust bootstrap for LTS , 2005, Comput. Stat. Data Anal..

[13]  Mia Hubert,et al.  LIBRA: a MATLAB library for robust analysis , 2005 .

[14]  M. Begert,et al.  Homogeneous temperature and precipitation series of Switzerland from 1864 to 2000 , 2005 .

[15]  PETER J. ROUSSEEUW,et al.  Computing LTS Regression for Large Data Sets , 2005, Data Mining and Knowledge Discovery.

[16]  Christoph Schär,et al.  Climate change: Hot news from summer 2003 , 2004, Nature.

[17]  Lucie Pokorná,et al.  Parametric versus non-parametric estimates of climatic trends , 2004 .

[18]  D. Lüthi,et al.  The role of increasing temperature variability in European summer heatwaves , 2004, Nature.

[19]  G. Tselioudis,et al.  Evidence of impact of aviation on cirrus cloud formation , 2003 .

[20]  Ursula Gather,et al.  Robust signal extraction for on-line monitoring data , 2004 .

[21]  P. S. Porter,et al.  Linear trend analysis: a comparison of methods , 2002 .

[22]  V. Yohai,et al.  A class of robust and fully efficient regression estimators , 2002 .

[23]  G. Willems,et al.  Small sample corrections for LTS and MCD , 2002 .

[24]  H. Storch,et al.  Statistical Analysis in Climate Research , 2000 .

[25]  Philip H. Ramsey Nonparametric Statistical Methods , 1974, Technometrics.

[26]  Richard F. Gunst,et al.  Applied Regression Analysis , 1999, Technometrics.

[27]  R. Wilcox A Note on the Theil-Sen Regression Estimator When the Regressor Is Random and the Error Term Is Heteroscedastic , 1998 .

[28]  A. Dai,et al.  Surface Observed Global Land Precipitation Variations during 1900-88 , 1997 .

[29]  Mia Hubert,et al.  Recent developments in PROGRESS , 1997 .

[30]  M. C. Ortiz,et al.  Regression by least median squares in the calculation of transition times for calibration in chronopotentiometry , 1996 .

[31]  K. Born Tropospheric warming and changes in weather variability over the Northern Hemisphere during the period 1967–1991 , 1996 .

[32]  R. Katz,et al.  Extreme events in a changing climate: Variability is more important than averages , 1992 .

[33]  P. Rousseeuw,et al.  Unmasking Multivariate Outliers and Leverage Points , 1990 .

[34]  Peter J. Rousseeuw,et al.  Robust Regression and Outlier Detection , 2005, Wiley Series in Probability and Statistics.

[35]  P. Rousseeuw Least Median of Squares Regression , 1984 .

[36]  F. Hampel A General Qualitative Definition of Robustness , 1971 .

[37]  P. Sen Estimates of the Regression Coefficient Based on Kendall's Tau , 1968 .

[38]  J. Hodges Efficiency in normal samples and tolerance of extreme values for some estimates of location , 1967 .