High-speed decoding of the (71, 36, 11) quadratic residue code
暂无分享,去创建一个
[1] Michele Elia,et al. Algebraic decoding of the (23, 12, 7) Golay code , 1987, IEEE Trans. Inf. Theory.
[2] Tsung-Ching Lin,et al. High speed decoding of the binary (47, 24, 11) quadratic residue code , 2010, Inf. Sci..
[3] Chong-Dao Lee,et al. Algebraic Decoding of Quadratic Residue Codes Using Berlekamp-Massey Algorithm , 2007, J. Inf. Sci. Eng..
[4] Trieu-Kien Truong,et al. Algebraic decoding of the (32, 16, 8) quadratic residue code , 1990, IEEE Trans. Inf. Theory.
[5] Tsung-Ching Lin,et al. Decoding of the (31, 16, 7) quadratic residue code , 2010 .
[6] S. Wicker. Error Control Systems for Digital Communication and Storage , 1994 .
[7] Chong-Dao Lee,et al. Algebraic Decoding of the $(89, 45, 17)$ Quadratic Residue Code , 2008, IEEE Transactions on Information Theory.
[8] Trieu-Kien Truong,et al. Decoding the (24,12,8) Golay code , 1990 .
[9] Xuemin Chen,et al. Decoding the (47, 24, 11) quadratic residue code , 2001, IEEE Trans. Inf. Theory.
[10] Chien-Hsiang Huang,et al. A Lookup Table Decoding of systematic (47, 24, 11) quadratic residue code , 2009, Inf. Sci..
[11] Chien-Hsiang Huang,et al. Efficient Decoding of Systematic (23, 12, 7) and (41, 21, 9) Quadratic Residue Codes , 2010, J. Inf. Sci. Eng..
[12] Chong-Dao Lee,et al. Algebraic decoding of (71, 36, 11), (79, 40, 15), and (97, 49, 15) quadratic residue codes , 2003, IEEE Trans. Commun..
[13] Chong-Dao Lee,et al. Algebraic decoding of (103, 52, 19) and (113, 57, 15) quadratic residue codes , 2005, IEEE Transactions on Communications.
[14] Xuemin Chen,et al. The algebraic decoding of the (41, 21, 9) quadratic residue code , 1992, IEEE Trans. Inf. Theory.