A gradient extremal walking algorithm

Gradient extremals define stream beds connecting stationary points on molecular potential energy surfaces. Using this concept we have developed an algorithm to determine transition states. We initiate walks at equilibrium geometries and follow the gradient extremals until a stationary point is reached. As an illustration we have investigated the mechanism for exchange of protons on carbon in methylenimine (H2C=NH) using a multi-reference self-consistent-field wave function.

[1]  B. Munsch,et al.  An ab initio SCF-LCAO-MO study of the nitrogen inversion barriers in methylenimine, diimide and carbodiimide , 1968 .

[2]  T. H. Dunning Gaussian Basis Functions for Use in Molecular Calculations. III. Contraction of (10s6p) Atomic Basis Sets for the First‐Row Atoms , 1970 .

[3]  James W. McIver,et al.  Structure of transition states in organic reactions. General theory and an application to the cyclobutene-butadiene isomerization using a semiempirical molecular orbital method , 1972 .

[4]  P. Botschwina An ab initio calculation of the force field and vibrational frequencies of H2 CNH , 1974 .

[5]  J. Pancíř Calculation of the least energy path on the energy hypersurface , 1975 .

[6]  Kazuhiro Ishida,et al.  Efficient determination and characterization of transition states using ab-initio methods , 1977 .

[7]  W. Miller,et al.  ON FINDING TRANSITION STATES , 1981 .

[8]  A. G. Shamov,et al.  The local definition of the Optimum ascent path on a multi-dimensional potential energy surface and its practical application for the location of saddle points , 1981 .

[9]  P. Jørgensen,et al.  Walking on potential energy surfaces , 1983 .

[10]  M. Frisch,et al.  Comprehensive theoretical study of isomers and rearrangement barriers of even-electron polyatomic molecules HmABHn (A, B = carbon, nitrogen, oxygen, and fluorine) , 1983 .

[11]  Hans Ågren,et al.  MC SCF optimization using the direct, restricted step, second-order norm-extended optimization method , 1984 .

[12]  P. Siegbahn,et al.  Dissociation of diimide , 1984 .

[13]  H. Tatewaki A systematic preparation of new contracted Gaussian‐type orbitals. IX [54/5], [64/5], [64/6], [74/6], [74/7] and MAXI‐1–MAXI‐5 from Li to Ne , 1985 .

[14]  David A. Case,et al.  On finding stationary states on large-molecule potential energy surfaces , 1985 .

[15]  M. Zerner,et al.  A Broyden—Fletcher—Goldfarb—Shanno optimization procedure for molecular geometries , 1985 .

[16]  Ajit Banerjee,et al.  Search for stationary points on surfaces , 1985 .

[17]  Trygve Helgaker,et al.  Systematic determination of MCSCF equilibrium and transition structures and reaction paths , 1986 .

[18]  Poul Jørgensen,et al.  Geometrical derivatives of energy surfaces and molecular properties , 1986 .

[19]  Trygve Helgaker,et al.  Analytical calculation of MCSCF dipole‐moment derivatives , 1986 .

[20]  Trygve Helgaker,et al.  Molecular Hessians for large‐scale MCSCF wave functions , 1986 .

[21]  Trygve Helgaker,et al.  Ground-state potential energy surface of diazene , 1987 .

[22]  R. Fletcher Practical Methods of Optimization , 1988 .