Dexterous Robotic Hands: Kinematics and Control

This report presents issues relating to the kinematics and control of dexterous robotic hands using the Utah-MIT hand as an illustrative example. The emphasis throughout is on the actual implementation and testing of the theoretical concepts presented. The kinematics of such hands is interesting and complicated owing to the large number of degrees of freedom involved. The implementation of position and force control algorithms on such tendon driven hands has previously suffered from inefficient formulations and a lack of sophisticated computer hardware. Both these problems are addressed in this report. A multiprocessor architecture has been built with high performance microcomputers on which real-time algorithms can be efficiently implemented. A large software library has also been built to facilitate flexible software development on this architecture. The position and force control algorithms described herein have been implemented and tested on this hardware.