Lipschitz stability for an inverse source scattering problem at a fixed frequency

This paper is concerned with an inverse source problem for the three-dimensional Helmholtz equation by a single boundary measurement at a fixed frequency. We show the uniqueness and a Lipschitz-type stability estimate under the assumption that the source function is piecewise constant on a domain which is made of a union of disjoint convex polyhedral subdomains.

[1]  R. Kress,et al.  Inverse Acoustic and Electromagnetic Scattering Theory , 1992 .

[2]  Takaaki Nara,et al.  An inverse source problem for Helmholtz's equation from the Cauchy data with a single wave number , 2011 .

[3]  Johannes Elschner,et al.  Acoustic Scattering from Corners, Edges and Circular Cones , 2016, 1603.05186.

[4]  Elena Beretta,et al.  Lipschitz continuous dependence of piecewise constant Lamé coefficients from boundary data: the case of non-flat interfaces , 2014, 1406.1899.

[5]  Gang Bao,et al.  Stability for the inverse source problems in elastic and electromagnetic waves , 2017, Journal de Mathématiques Pures et Appliquées.

[6]  A. Calderón,et al.  On an inverse boundary value problem , 2006 .

[7]  Angkana Ruland,et al.  Lipschitz stability for the finite dimensional fractional Calderón problem with finite Cauchy data , 2018, Inverse Problems & Imaging.

[8]  Elena Beretta,et al.  Uniqueness and Lipschitz stability for the identification of Lam\'e parameters from boundary measurements , 2013, 1303.2443.

[9]  John Sylvester,et al.  Corners Always Scatter , 2012, 1211.1848.

[10]  William Rundell,et al.  A Recursive Algorithm for MultiFrequency Acoustic Inverse Source Problems , 2015, SIAM J. Numer. Anal..

[11]  Sergio Vessella,et al.  Lipschitz stability for a stationary 2D inverse problem with unknown polygonal boundary , 2006 .

[12]  Eemeli Blåsten,et al.  Nonradiating Sources and Transmission Eigenfunctions Vanish at Corners and Edges , 2018, SIAM J. Math. Anal..

[13]  Junshan Lin,et al.  A multi-frequency inverse source problem , 2010 .

[14]  Bastian Harrach,et al.  Uniqueness and Lipschitz stability in electrical impedance tomography with finitely many electrodes , 2018, Inverse Problems.

[15]  Vianey Villamizar,et al.  On the multi-frequency inverse source problem in heterogeneous media , 2012, 1312.7395.

[16]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[17]  Peijun Li,et al.  Stability for the Acoustic Inverse Source Problem in Inhomogeneous Media , 2020, SIAM J. Appl. Math..

[18]  Junshan Lin,et al.  Inverse scattering problems with multi-frequencies , 2015 .

[19]  Maarten V. de Hoop,et al.  Lipschitz stability for the electrostatic inverse boundary value problem with piecewise linear conductivities , 2015, 1509.06277.

[20]  Determining a Piecewise Conductive Medium Body by a Single Far-Field Measurement , 2020, 2005.04420.

[21]  Elena Beretta,et al.  Lipschitz Stability for the Electrical Impedance Tomography Problem: The Complex Case , 2010, 1008.4046.

[22]  Jin Cheng,et al.  Increasing stability in the inverse source problem with many frequencies , 2016 .

[23]  Masaru Ikehata,et al.  Reconstruction of a source domain from the Cauchy data: II. Three-dimensional case , 1999, Inverse Problems.

[24]  Gang Bao,et al.  An Inverse Source Problem for Maxwell's Equations in Magnetoencephalography , 2002, SIAM J. Appl. Math..

[25]  Peijun Li,et al.  Increasing stability for the inverse source scattering problem with multi-frequencies , 2016, 1607.06953.

[26]  Sergio Vessella,et al.  Lipschitz stability for the inverse conductivity problem , 2005, Adv. Appl. Math..

[27]  Hongyu Liu,et al.  Recovering piecewise constant refractive indices by a single far-field pattern , 2017, Inverse Problems.

[28]  Luca Rondi,et al.  A remark on a paper by Alessandrini and Vessella , 2006, Adv. Appl. Math..

[29]  Avner Friedman,et al.  On the Uniqueness in the Inverse Conductivity Problem with One Measurement , 1988 .

[30]  Jack K. Cohen,et al.  Nonuniqueness in the inverse source problem in acoustics and electromagnetics , 1975 .

[31]  Maarten V. de Hoop,et al.  Lipschitz Stability of an Inverse Boundary Value Problem for a Schrödinger-Type Equation , 2012, SIAM J. Math. Anal..

[32]  L. Bourgeois A remark on Lipschitz stability for inverse problems , 2013 .

[33]  Jingzhi Li,et al.  Inverse Source Problems in an Inhomogeneous Medium with a Single Far-Field Pattern , 2019, SIAM J. Math. Anal..

[34]  Steven Kusiak,et al.  The scattering support , 2003 .

[35]  Hongyu Liu,et al.  Stable determination of polygonal inclusions in Calderón’s problem by a single partial boundary measurement , 2019, Inverse Problems.

[36]  J. Sylvester,et al.  A global uniqueness theorem for an inverse boundary value problem , 1987 .

[37]  Matteo Santacesaria,et al.  Calderón's inverse problem with a finite number of measurements II: independent data , 2018, Forum of Mathematics, Sigma.

[38]  J. Nédélec Acoustic and Electromagnetic Equations : Integral Representations for Harmonic Problems , 2001 .

[39]  P. Alam ‘S’ , 2021, Composites Engineering: An A–Z Guide.

[40]  J. Sylvester Notions of support for far fields , 2006 .

[41]  A. S. Fokas,et al.  The unique determination of neuronal currents in the brain via magnetoencephalography , 2004 .

[42]  Maarten V. de Hoop,et al.  Uniqueness and Lipschitz stability of an inverse boundary value problem for time-harmonic elastic waves , 2014, 1412.3465.