Multiwavelength modelling of the β Leo debris disc: one, two or three planetesimal populations?

In this paper we present a model of the β Leo debris disc, with an emphasis on modelling the resolved Photodetector Array Camera and Spectrometer (PACS) images obtained as a part of the Herschel key programme DEBRIS. We also present new Spectral and Photometric Imaging REceiver (SPIRE) images of the disc at 250 μm, as well as new constraints on the disc from SCUBA-2, mid-infrared (mid-IR) and scattered light imaging. Combining all the available observational constraints, we find three possible models for the β Leo (HD 102647) debris disc: (i) a two-component model, comprised of a hot component at 2 au and a cold component from 15 to 70 au; (ii) a three-component model with hot dust at 2 au, warm dust at 9 au and a cold component from 30 to 70 au, is equally valid since the cold emission is not resolved within 30 au; (iii) a somewhat less likely possibility is that the system consists of a single very eccentric planetesimal population, with pericentres at 2 au and apocentres at 65 au. Thus, despite the wealth of observational constraints significant ambiguities remain; deep mid-IR and scattered light imaging of the dust distribution within 30 au seems to be the most promising method to resolve the degeneracy. We discuss the implications for the possible planetary system architecture, e.g. the two-component model suggests that planets may exist at 2–15 au, while the three-component model suggests planets between 2 and 30 au with a stable region containing the dust belt at 9 au, and there should be no planets between 2 and 65 au in the eccentric planetesimal model. We suggest that the hot dust may originate in the disintegration of comets scattered in the cold disc, and examine all A stars known to harbour both hot and cold dust to consider the possibility that the ratio of hot and cold dust luminosities is indicative of the intervening planetary system architecture.

[1]  S. J. Liu,et al.  Herschel : the first science highlights Special feature L etter to the E ditor The Herschel-SPIRE instrument and its in-flight performance , 2010 .

[2]  J. G. Jernigan,et al.  Astronomical Data Analysis Software and Systems XX , 2011 .

[3]  K. Y. L. Su,et al.  Steady State Evolution of Debris Disks around A Stars , 2007 .

[4]  W. Steen Absorption and Scattering of Light by Small Particles , 1999 .

[5]  Mark Clampin,et al.  Optical Images of an Exosolar Planet 25 Light-Years from Earth , 2008, Science.

[6]  John E. Carlstrom,et al.  Constraints on the HL Tauri Protostellar Disk from Millimeter- and Submillimeter-Wave Interferometry , 1997 .

[7]  A. Boccaletti,et al.  A Giant Planet Imaged in the Disk of the Young Star β Pictoris , 2010, Science.

[8]  C. Dominik,et al.  Age Dependence of the Vega Phenomenon: Theory , 2003, astro-ph/0308364.

[9]  Kalas,et al.  Rings in the Planetesimal Disk of beta Pictoris. , 2000, The Astrophysical journal.

[10]  J. Lunine,et al.  Protostars and planets III , 1993 .

[11]  P. Kalas,et al.  First Optical Images of Circumstellar Dust Surrounding the Debris Disk Candidate HD 32297 , 2005 .

[12]  Pierre Kervella,et al.  VLTI near-IR interferometric observations of Vega-like stars: Radius and age of a PsA, b Leo, b Pic, e Eri and t Cet , 2004 .

[13]  R. Smith,et al.  The nature of mid-infrared excesses from hot dust around Sun-like stars , 2008, 0804.4580.

[14]  Amy Bonsor,et al.  Dynamical effects of stellar mass-loss on a Kuiper-like belt , 2011, 1102.3185.

[15]  Grant Kennedy,et al.  Resolving debris discs in the far-infrared: Early highlights from the DEBRIS survey , 2010, 1005.5147.

[16]  K. H. Kim,et al.  Spitzer IRS Spectroscopy of IRAS-discovered Debris Disks , 2006, astro-ph/0605277.

[17]  Wayne S. Holland,et al.  Submillimeter Observations of an Asymmetric Dust Disk around Fomalhaut , 2003 .

[18]  Douglas Scott,et al.  JCMT Telescope Control System upgrades for SCUBA-2 , 2010, Astronomical Telescopes + Instrumentation.

[19]  Christopher C. Stark,et al.  The cold origin of the warm dust around ε Eridani , 2010, 1011.4882.

[20]  Francesco Paresce,et al.  Main-Sequence Stars with Circumstellar Solid Material - the VEGA Phenomenon , 1993 .

[21]  M. C. Wyatt,et al.  Resolved debris disc emission around η Telescopii: a young solar system or ongoing planet formation? , 2008, 0810.5087.

[22]  Z. Kam,et al.  Absorption and Scattering of Light by Small Particles , 1998 .

[23]  G. G. Douglass,et al.  The Washington Double Star Catalog (WDS, 1996.0) , 1997 .

[24]  D. Padgett,et al.  Probing dust grain evolution in IM Lupi's circumstellar disc. Multi-wavelength observations and mo , 2008, 0808.0619.

[25]  Paul Kalas,et al.  Asymmetries in the Beta Pictoris Dust Disk , 1995 .

[26]  C. Packham,et al.  Mid-Infrared Resolution of a 3 AU Radius Debris Disk around ζ Leporis* , 2006 .

[27]  S. Udry,et al.  Extrasolar planets and brown dwarfs around A-F type stars. VI. High precision RV survey of early type dwarfs with HARPS , 2008, 0809.4636.

[28]  S. Ott,et al.  Herschel Space Observatory - An ESA facility for far-infrared and submillimetre astronomy , 2010, 1005.5331.

[29]  K. Y. L. Su,et al.  ACCEPTED FOR PUBLICATION IN APJ. Preprint typeset using LATEX style emulateapj v. 2/19/04 THE DEBRIS DISK AROUND HR 8799 , 2022 .

[30]  Per Friberg,et al.  Extinction correction and on-sky calibration of SCUBA-2 , 2010, Astronomical Telescopes + Instrumentation.

[31]  J. Horner,et al.  Jupiter – friend or foe? II: the Centaurs , 2008, International Journal of Astrobiology.

[32]  L. C. Henyey,et al.  Diffuse radiation in the Galaxy , 1940 .

[33]  M. Wyatt,et al.  Evolution of Debris Disks , 2008 .

[34]  R. Laureijs,et al.  A 25 micron search for Vega-like disks around main-sequence stars with ISO , 2002 .

[35]  M. Franx,et al.  Hubble Space Telescope ACS Multiband Coronagraphic Imaging of the Debris Disk around β Pictoris , 2006 .

[36]  H. Butner,et al.  A Survey of Nearby Main-Sequence Stars for Submillimeter Emission , 2003 .

[37]  B. Macintosh,et al.  Direct Imaging of Multiple Planets Orbiting the Star HR 8799 , 2008, Science.

[38]  M. Holman,et al.  Structure in the Dusty Debris around Vega , 2002 .

[39]  B. Jones,et al.  Jupiter – friend or foe? I: The asteroids , 2008, International Journal of Astrobiology.

[40]  A. Brandeker,et al.  The Vega debris disc: A view from Herschel , 2010, 1005.3543.

[41]  P. O. Lagage,et al.  Dust depletion in the inner disk of β Pictoris as a possible indicator of planets , 1994, Nature.

[42]  Mark R. Kidger,et al.  Spectral Irradiance Calibration in the Infrared. X. A Self-Consistent Radiometric All-Sky Network of Absolutely Calibrated Stellar Spectra , 1999 .

[43]  H. McAlister,et al.  DUST IN THE INNER REGIONS OF DEBRIS DISKS AROUND A STARS , 2008, 0810.3701.

[44]  B. Zuckerman,et al.  Submillimetre images of dusty debris around nearby stars , 1998, Nature.

[45]  Robert Mann,et al.  Astronomical Data Analysis Software and Systems XXI , 2012 .

[46]  A. Liddle,et al.  Information criteria for astrophysical model selection , 2007, astro-ph/0701113.

[47]  Jonas Zmuidzinas,et al.  Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy V , 2016 .

[48]  David E. Trilling,et al.  Decay of Planetary Debris Disks , 2005 .

[49]  A. Schuster On the absorption and scattering of light , 1920 .

[50]  The Inner Rings of β Pictoris , 2002, astro-ph/0212081.

[51]  Paolo Conconi,et al.  Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series , 2012 .

[52]  K. Stapelfeldt,et al.  COMMON WARM DUST TEMPERATURES AROUND MAIN-SEQUENCE STARS , 2011 .

[53]  Deep 10 and 18 Micron Imaging of the HR 4796A Circumstellar Disk: Transient Dust Particles and Tentative Evidence for a Brightness Asymmetry , 1999, astro-ph/9909363.

[54]  R. Smith,et al.  Warm dusty discs: exploring the A star 24 μm debris population , 2010, 1004.0644.

[55]  S. T. Ridgway,et al.  Circumstellar material in the Vega inner system revealed by CHARA/FLUOR , 2006 .

[56]  M. Simon,et al.  NEARBY YOUNG STARS SELECTED BY PROPER MOTION. I. FOUR NEW MEMBERS OF THE β PICTORIS MOVING GROUP FROM THE TYCHO-2 CATALOG , 2008, 0812.1159.

[57]  G. Rieke,et al.  THE STRUCTURE OF THE β LEONIS DEBRIS DISK , 2010, 1010.0003.

[58]  M. Wyatt Spiral structure when setting up pericentre glow : possible giant planets at hundreds of AU in the HD 141569 disk , 2005, astro-ph/0506208.

[59]  IRS Spectra of Solar-Type Stars: A Search for Asteroid Belt Analogs , 2006, astro-ph/0601468.

[60]  M. Kuchner,et al.  INTERSTELLAR MEDIUM SCULPTING OF THE HD 32297 DEBRIS DISK , 2009, 0908.4368.

[61]  H. Bischof,et al.  The Photodetector Array Camera and Spectrometer (PACS) on the Herschel Space Observatory , 2010, 1005.1487.

[62]  Rachel Lynn Akeson,et al.  Constraints on Circumstellar Disk Parameters from Multiwavelength Observations: T Tauri and SU Aurigae , 2002 .

[63]  Glenn Schneider,et al.  NICMOS Imaging of the HR 4796A Circumstellar Disk , 1999 .

[64]  Bertrand Mennesson,et al.  AN INTERFEROMETRIC STUDY OF THE FOMALHAUT INNER DEBRIS DISK. I. NEAR-INFRARED DETECTION OF HOT DUST WITH VLTI/VINCI , 2009, 0908.3133.

[65]  Weinberger,et al.  The Circumstellar Disk of HD 141569 Imaged with NICMOS. , 1999, The Astrophysical journal.

[66]  Collisional processes in extrasolar planetesimal discs – dust clumps in Fomalhaut's debris disc , 2002, astro-ph/0204034.

[67]  Anthony J. Walton,et al.  Characterization of a prototype SCUBA-2 1280-pixel submillimetre superconducting bolometer array , 2006, SPIE Astronomical Telescopes + Instrumentation.

[68]  Pierre Bastien,et al.  Monte Carlo radiative transfer in protoplanetary disks , 2006 .

[69]  C. Packham,et al.  HIGH SPATIAL RESOLUTION IMAGING OF THERMAL EMISSION FROM DEBRIS DISKS , 2010, 1011.1410.

[70]  K. Tsiganis,et al.  Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets , 2005, Nature.

[71]  G. Fazio,et al.  Mid-Infrared Imaging of Candidate Vega-like Systems , 2001, astro-ph/0105314.

[72]  Nikolai Piskunov,et al.  Modelling of Stellar Atmospheres , 2003 .

[73]  G. Rieke,et al.  The Exceptionally Large Debris Disk around γ Ophiuchi , 2008, 0804.2924.

[74]  M. C. Wyatt,et al.  HOW OBSERVATIONS OF CIRCUMSTELLAR DISK ASYMMETRIES CAN REVEAL HIDDEN PLANETS : PERICENTER GLOW AND ITS APPLICATION TO THE HR 4796 DISK , 1999 .

[75]  J. S. Dohnanyi Collisional model of asteroids and their debris , 1969 .

[76]  Harold F. Levison,et al.  COMETARY ORIGIN OF THE ZODIACAL CLOUD AND CARBONACEOUS MICROMETEORITES. IMPLICATIONS FOR HOT DEBRIS DISKS , 2009, 0909.4322.

[77]  High-resolution imaging of the dust disk around 49 Ceti , 2007, astro-ph/0701352.

[78]  M. Payne,et al.  Collisional evolution of eccentric planetesimal swarms , 2009, 0910.4725.

[79]  S. T. Megeath,et al.  The Vega debris disk: A surprise from spitzer , 2005 .

[80]  E. Serabyn,et al.  Radial Distribution of Dust Grains around HR 4796A , 2004, astro-ph/0409283.

[81]  Mark Clampin,et al.  A planetary system as the origin of structure in Fomalhaut's dust belt , 2005, Nature.

[82]  D. Mouillet,et al.  A planet on an inclined orbit as an explanation of the warp in the β Pictoris disc , 1997 .

[83]  R. Smith,et al.  Resolving the hot dust around HD69830 and η Corvi with MIDI and VISIR , 2009, 0906.3704.

[84]  UK,et al.  The history of the Solar system's debris disc: observable properties of the Kuiper belt , 2009, 0906.3755.

[85]  Ages of A-Type Vega-like Stars from uvbyβ Photometry , 2000, astro-ph/0010102.

[86]  S. Oh,et al.  The infrared astronomical mission AKARI , 2007, 0708.1796.

[87]  Gautam Vasisht,et al.  Keck Interferometer Nuller Data Reduction and On-Sky Performance , 2009 .

[88]  Glenn Schneider,et al.  DISCOVERY OF A NEARLY EDGE-ON DISK AROUND HD 32297 , 2005 .

[89]  K. Y. L. Su,et al.  accepted for publication in ApJ Preprint typeset using L ATEX style emulateapj v. 2/19/04 DEBRIS DISK EVOLUTION AROUND A STARS , 2006 .

[90]  J. Chambers,et al.  Jupiter – friend or foe? III: the Oort cloud comets , 2009, International Journal of Astrobiology.

[91]  M. C. Wyatt,et al.  Target selection for the SUNS and DEBRIS surveys for debris discs in the solar neighbourhood , 2009, 0911.3426.

[92]  M. Wyatt,et al.  Asymmetric heating of the HR 4796A dust ring due to pericenter glow , 2010, 1011.1437.

[93]  M. Franx,et al.  Hubble Space Telescope ACS Coronagraphic Imaging of the Circumstellar Disk around HD 141569A , 2003 .