Quantum authencryption: one-step authenticated quantum secure direct communications for off-line communicants

This work proposes a new direction in quantum cryptography called quantum authencryption. Quantum authencryption (QA), a new term to distinguish from authenticated quantum secure direct communications, is used to describe the technique of combining quantum encryption and quantum authentication into one process for off-line communicants. QA provides a new way of quantum communications without the presence of a receiver on line, and thus makes many applications depending on secure one-way quantum communications, such as quantum E-mail systems, possible. An example protocol using single photons and one-way hash functions is presented to realize the requirements on QA.

[1]  Chun-Wei Yang,et al.  Revisiting Deng et al.’s Multiparty Quantum Secret Sharing Protocol , 2011 .

[2]  W. Qiao-yan,et al.  Cryptanalysis of Quantum Secure Direct Communication and Authentication Scheme via Bell States , 2011 .

[3]  Shor,et al.  Simple proof of security of the BB84 quantum key distribution protocol , 2000, Physical review letters.

[4]  Liu Jun,et al.  Revisiting quantum secure direct communication with W state , 2006 .

[5]  Ming-Liang Hu,et al.  Quantum secure dialogue by using single photons , 2010 .

[6]  Qiaoyan Wen,et al.  An efficient two-party quantum private comparison protocol with decoy photons and two-photon entanglement , 2009 .

[7]  Zhan-jun Zhang Multiparty secret sharing of quantum information via cavity QED , 2006 .

[8]  Gilles Brassard,et al.  Quantum cryptography: Public key distribution and coin tossing , 2014, Theor. Comput. Sci..

[9]  Zhan-jun Zhang,et al.  Multiparty quantum secret sharing , 2004, quant-ph/0412203.

[10]  Fuguo Deng,et al.  Circular quantum secret sharing , 2006, quant-ph/0612018.

[11]  Gan Gao,et al.  Two quantum dialogue protocols without information leakage , 2010 .

[12]  Shor,et al.  Good quantum error-correcting codes exist. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[13]  Zhan-jun Zhang,et al.  Reply to 'Comment on 'Multiparty quantum secret sharing of classical messages based on entanglement swapping'' , 2007 .

[14]  Fei Gao,et al.  Efficient quantum private comparison employing single photons and collective detection , 2013, Quantum Inf. Process..

[15]  Zhan-jun Zhang Robust multiparty quantum secret key sharing over two collective-noise channels , 2006 .

[16]  Hwayean Lee,et al.  Quantum direct communication with authentication , 2005, quant-ph/0512051.

[17]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[18]  Liu Dan,et al.  A New Quantum Secure Direct Communication Scheme with Authentication , 2010 .

[19]  Xiao Li,et al.  Increasing the Efficiencies of Random-Choice-Based Quantum Communication Protocols with Delayed Measurement , 2004 .

[20]  Chun-Wei Yang,et al.  Thwarting intercept-and-resend attack on Zhang’s quantum secret sharing using collective rotation noises , 2012, Quantum Inf. Process..

[21]  Fei Gao,et al.  Comment on “Multiparty quantum secret sharing of classical messages based on entanglement swapping” , 2007 .

[22]  Tzonelih Hwang,et al.  New quantum private comparison protocol using EPR pairs , 2011, Quantum Information Processing.

[23]  Charles H. Bennett,et al.  Quantum cryptography using any two nonorthogonal states. , 1992, Physical review letters.

[24]  Chun-Wei Yang,et al.  Quantum dialogue protocols immune to collective noise , 2013, Quantum Inf. Process..

[25]  Jing Yang,et al.  Quantum Secure Direct Communication with Authentication Expansion Using Single Photons , 2010 .

[26]  Zhang Zhan-jun,et al.  Quantum dialogue revisited , 2005 .

[27]  Chia-Wei Tsai,et al.  New deterministic quantum communication via symmetric W state , 2010 .

[28]  A. Calderbank,et al.  Quantum Error Correction and Orthogonal Geometry , 1996, quant-ph/9605005.

[29]  Chen Hanwu,et al.  An efficient deterministic secure quantum communication scheme based on cluster states and identity authentication , 2009 .

[30]  Chia-Wei Tsai,et al.  Probabilistic quantum key distribution , 2011, Quantum Inf. Comput..

[31]  Claude E. Shannon,et al.  Communication theory of secrecy systems , 1949, Bell Syst. Tech. J..

[32]  Viola,et al.  Theory of quantum error correction for general noise , 2000, Physical review letters.

[33]  Tzonelih Hwang,et al.  Intercept–resend attacks on Chen et al.'s quantum private comparison protocol and the improvements , 2011 .

[34]  Tzonelih Hwang,et al.  SECURE DIRECT COMMUNICATION USING DETERMINISTIC BB84 PROTOCOL , 2008 .

[35]  Ivan Damgård,et al.  A Design Principle for Hash Functions , 1989, CRYPTO.

[36]  Tzonelih Hwang,et al.  Dense coding using cluster states and its application on deterministic secure quantum communication , 2011 .

[37]  K. Boström,et al.  Deterministic secure direct communication using entanglement. , 2002, Physical review letters.

[38]  T. Hwang,et al.  One-Way Quantum Authenticated Secure Communication Using Rotation Operation , 2011 .

[39]  Wei-Wei Zhang,et al.  Cryptanalysis and improvement of the quantum private comparison protocol with semi-honest third party , 2013, Quantum Inf. Process..

[40]  G. Long,et al.  Theoretically efficient high-capacity quantum-key-distribution scheme , 2000, quant-ph/0012056.

[41]  Zhan-jun Zhang Comment on : Quantum direct communication with authentication , 2006, quant-ph/0604125.

[42]  Lo,et al.  Unconditional security of quantum key distribution over arbitrarily long distances , 1999, Science.

[43]  Zhang Zhan-jun,et al.  Deterministic secure direct communication by using swapping quantum entanglement and local unitary operations , 2005 .

[44]  Tzonelih Hwang,et al.  Provably Secure Three-Party Authenticated Quantum Key Distribution Protocols , 2007, IEEE Transactions on Dependable and Secure Computing.

[45]  Tzonelih Hwang,et al.  Quantum key distribution protocol using dense coding of three-qubit W state , 2011 .

[46]  Zhang Wen,et al.  Eavesdropping on Quantum Secure Direct Communication with W State in Noisy Channel , 2008 .

[47]  Shi-Jinn Horng,et al.  Quantum direct communication with mutual authentication , 2009, Quantum Inf. Comput..

[48]  Chun-Wei Yang,et al.  Fault tolerant two-step quantum secure direct communication protocol against collective noises , 2011 .

[49]  Ekert,et al.  Quantum Error Correction for Communication. , 1996 .

[50]  Nguyen Ba An Quantum dialogue , 2004 .

[51]  Chun-Wei Yang,et al.  Fault tolerant deterministic quantum communications using GHZ states over collective-noise channels , 2013, Quantum Inf. Process..

[52]  Gottesman Class of quantum error-correcting codes saturating the quantum Hamming bound. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[53]  Xin Xinquan,et al.  Transformation of Sign of Nonlinear Refraction between Mo(W)/S/Cu Planar Metal Clusters , 2008 .

[54]  Seth Lloyd,et al.  Direct and reverse secret-key capacities of a quantum channel. , 2008, Physical review letters.

[55]  Yuguang Yang,et al.  Quantum Secure Direct Communication with Authentication Expansion Using Single Photons , 2010 .

[56]  Z. Man,et al.  Multiparty quantum secret sharing of classical messages based on entanglement swapping , 2004, quant-ph/0406103.

[57]  Yixian Yang,et al.  An efficient protocol for the private comparison of equal information based on the triplet entangled state and single-particle measurement , 2010 .

[58]  Fuguo Deng,et al.  Efficient high-capacity quantum secret sharing with two-photon entanglement , 2006, quant-ph/0602160.

[59]  周萍,et al.  Quantum secure direct communication with quantum encryption based on pure entangled states , 2007 .

[60]  Chun-Wei Yang,et al.  Modification Attack on QSDC with Authentication and the Improvement , 2013 .

[61]  Zhan-Jun Zhang,et al.  SECURE DETERMINISTIC BIDIRECTIONAL COMMUNICATION WITHOUT ENTANGLEMENT , 2006 .

[62]  Pan Wei,et al.  Quantum Secure Direct Communication Based on Authentication , 2008 .

[63]  Chia-Wei Tsai,et al.  Multi-user private comparison protocol using GHZ class states , 2013, Quantum Inf. Process..

[64]  Shor,et al.  Scheme for reducing decoherence in quantum computer memory. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[65]  T. Hwang,et al.  Improved QSDC Protocol over a Collective-Dephasing Noise Channel , 2012 .

[66]  Stefano Pirandola,et al.  Side-channel-free quantum key distribution. , 2011, Physical review letters.

[67]  Laflamme,et al.  Perfect Quantum Error Correcting Code. , 1996, Physical review letters.

[68]  Zhan-jun Zhang,et al.  Improved Wójcik's eavesdropping attack on ping-pong protocol without eavesdropping-induced channel loss , 2004, quant-ph/0411030.

[69]  Chao-Hua Yu,et al.  Quantum Secure Direct Communication with Authentication Using Two Nonorthogonal States , 2013 .

[70]  Li Zhi-qiang,et al.  Efficient Quantum Secure Direct Communication with Authentication , 2007 .

[71]  Guo-Fang Shi,et al.  Bidirectional quantum secure communication based on a shared private Bell state , 2009 .

[72]  Zhan-Jun Zhang,et al.  Multiparty quantum secret sharing of secure direct communication , 2005 .

[73]  Wei Cui,et al.  Quantum Private Comparison Protocol Based on Bell Entangled States , 2012 .

[74]  Reply to: “Comment on: ‘Efficient high-capacity quantum secret sharing with two-photon entanglement’ [Phys. Lett. A 372 (2008) 1957]” [Phys. Lett. A 373 (2009) 396] , 2009 .

[75]  Zhan-jun Zhang,et al.  Improving Wojcik's eavesdropping attack on the ping-pong protocol , 2004 .

[76]  Fuguo Deng,et al.  Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block , 2003, quant-ph/0308173.