Which of Our Modeling Predictions Are Robust?

In theoretical ecology it is well known that the steady state expressions of the variables in a food chain crucially depend on the parity of the length of the chain. This poses a major problem for modeling real food webs because it is difficult to establish their true number of trophic levels, with sometimes rare predators and often rampant pathogens. Similar problems arise in the modeling of chronic viral infections. We review examples where seemingly general interpretations strongly depend on the number of levels in a model, and on its specific equations. This Perspective aims to open the discussion on this problem.

[1]  Haihong Zhu,et al.  Parameter Identifiability and Estimation of HIV/AIDS Dynamic Models , 2008, Bulletin of mathematical biology.

[2]  A. Perelson Modelling viral and immune system dynamics , 2002, Nature Reviews Immunology.

[3]  L. Weinberger,et al.  Dramatic Rise in Plasma Viremia after CD8+ T Cell Depletion in Simian Immunodeficiency Virus–infected Macaques , 1999, The Journal of experimental medicine.

[4]  M. Nowak,et al.  Population Dynamics of Immune Responses to Persistent Viruses , 1996, Science.

[5]  Alan S. Perelson,et al.  Hepatitis C Viral Kinetics in the Era of Direct Acting Antiviral Agents and Interleukin-28B , 2011 .

[6]  Peter A. Abrams,et al.  The Fallacies of "Ratio‐Dependent" Predation , 1994 .

[7]  Ruy M Ribeiro,et al.  Modelling deuterium labelling of lymphocytes with temporal and/or kinetic heterogeneity , 2012, Journal of The Royal Society Interface.

[8]  M. Benkirane,et al.  CD4+ T cell surface CCR5 density as a determining factor of virus load in persons infected with human immunodeficiency virus type 1. , 2000, The Journal of infectious diseases.

[9]  A. Telenti,et al.  Phylogenetic Approach Reveals That Virus Genotype Largely Determines HIV Set-Point Viral Load , 2010, PLoS pathogens.

[10]  R. Arditi,et al.  Coupling in predator-prey dynamics: Ratio-Dependence , 1989 .

[11]  T. Bellows,et al.  Simulation models for laboratory populations of Callosobruchus chinensis and Callosobruchus maculatus Stored products of plant origin, beetles , 1982 .

[12]  Alan S. Perelson,et al.  Fitness Costs and Diversity of the Cytotoxic T Lymphocyte (CTL) Response Determine the Rate of CTL Escape during Acute and Chronic Phases of HIV Infection , 2011, Journal of Virology.

[13]  A. F. Marée,et al.  Release of Virus from Lymphoid Tissue Affects Human Immunodeficiency Virus Type 1 and Hepatitis C Virus Kinetics in the Blood , 2001, Journal of Virology.

[14]  A. Perelson,et al.  Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection , 1995, Nature.

[15]  Harel Dahari,et al.  Hepatitis C Viral Kinetics in the Era of Direct Acting Antiviral Agents and IL28B. , 2011, Current hepatitis reports.

[16]  Douglas D. Richman,et al.  Viral Dynamics of Acute HIV-1 Infection , 1999, The Journal of experimental medicine.

[17]  R. May Uses and Abuses of Mathematics in Biology , 2004, Science.

[18]  Christian L. Althaus,et al.  Implications of CTL-Mediated Killing of HIV-Infected Cells during the Non-Productive Stage of Infection , 2011, PloS one.

[19]  A S Perelson,et al.  A perspective on modelling hepatitis C virus infection , 2010, Journal of viral hepatitis.

[20]  Sebastian Bonhoeffer,et al.  Rapid production and clearance of HIV-1 and hepatitis C virus assessed by large volume plasma apheresis , 1999, The Lancet.

[21]  L. Segel,et al.  Extending the quasi-steady state approximation by changing variables. , 1996, Bulletin of mathematical biology.

[22]  Alan S. Perelson,et al.  Hepatitis C Viral Dynamics in Vivo and the Antiviral Efficacy of Interferon-α Therapy , 1998 .

[23]  T. Déirdre Hollingsworth,et al.  Variation in HIV-1 set-point viral load: Epidemiological analysis and an evolutionary hypothesis , 2007, Proceedings of the National Academy of Sciences.

[24]  Christl A. Donnelly,et al.  HIV-1 Transmitting Couples Have Similar Viral Load Set-Points in Rakai, Uganda , 2010, PLoS pathogens.

[25]  R. J. de Boer,et al.  A Formal Derivation of the “Beddington” Functional Response , 1997 .

[26]  J. Beddington,et al.  Mutual Interference Between Parasites or Predators and its Effect on Searching Efficiency , 1975 .

[27]  A S Perelson,et al.  Towards a general function describing T cell proliferation. , 1995, Journal of theoretical biology.

[28]  Athanasius F. M. Marée,et al.  Small variations in multiple parameters account for wide variations in HIV–1 set–points: a novel modelling approach , 2001, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[29]  Scott N. Mueller,et al.  High antigen levels are the cause of T cell exhaustion during chronic viral infection , 2009, Proceedings of the National Academy of Sciences.

[30]  Elizabeth T. Cirulli,et al.  Common Genetic Variation and the Control of HIV-1 in Humans , 2009, PLoS genetics.

[31]  R. D. de Boer,et al.  Understanding the Failure of CD8+ T-Cell Vaccination against Simian/Human Immunodeficiency Virus , 2007, Journal of Virology.

[32]  Alan S. Perelson,et al.  Current Estimates for HIV-1 Production Imply Rapid Viral Clearance in Lymphoid Tissues , 2010, PLoS Comput. Biol..

[33]  Sebastian Bonhoeffer,et al.  Glancing behind virus load variation in HIV-1 infection. , 2003, Trends in microbiology.

[34]  Rob J. de Boer,et al.  Understanding the failure of CD8 T-cell vaccination against simian/human immunodeficiency virus , 2007 .

[35]  Joshua T. Herbeck,et al.  A Strong Case for Viral Genetic Factors in HIV Virulence , 2011, Viruses.