A Structure Preserving Lanczos Algorithm for Computing the Optical Absorption Spectrum
暂无分享,去创建一个
Chao Yang | Steven G. Louie | Jack Deslippe | Meiyue Shao | Lin Lin | Felipe H. da Jornada | Chao Yang | S. Louie | Lin Lin | Meiyue Shao | F. D. Jornada | J. Deslippe | F. Jornada
[1] I. Tamm. Relativistic Interaction of Elementary Particles , 1945 .
[2] S. Dancoff. Non-Adiabatic Meson Theory of Nuclear Forces , 1950 .
[3] V. Heine,et al. Electronic structure based on the local atomic environment for tight-binding bands. II , 1972 .
[4] R. Haydock. The recursive solution of the Schrödinger equation , 1980 .
[5] G. Strinati. Application of the Green’s functions method to the study of the optical properties of semiconductors , 1988 .
[6] P. Benner,et al. An Implicitly Restarted Symplectic Lanczos Method for the Hamiltonian Eigenvalue Problem , 1997 .
[7] S. Louie,et al. Electron-hole excitations and optical spectra from first principles , 2000 .
[8] A. ADoefaa,et al. ? ? ? ? f ? ? ? ? ? , 2003 .
[9] David S. Watkins,et al. On Hamiltonian and symplectic Lanczos processes , 2004 .
[10] R. Gebauer,et al. Efficient approach to time-dependent density-functional perturbation theory for optical spectroscopy. , 2005, Physical review letters.
[11] Miodrag M. Spalevic. On generalized averaged Gaussian formulas , 2007, Math. Comput..
[12] Gene H. Golub,et al. Matrices, moments, and quadrature , 2007, Milestones in Matrix Computation.
[13] Y. Saad,et al. Turbo charging time-dependent density-functional theory with Lanczos chains. , 2006, The Journal of chemical physics.
[14] A. Marini,et al. Exciton-plasmon States in nanoscale materials: breakdown of the Tamm-Dancoff approximation. , 2008, Nano letters.
[15] G. Golub,et al. Matrices, Moments and Quadrature with Applications , 2009 .
[16] D. Lu,et al. Ab initio calculations of optical absorption spectra: solution of the Bethe-Salpeter equation within density matrix perturbation theory. , 2010, The Journal of chemical physics.
[17] Y. Saad,et al. Harnessing molecular excited states with Lanczos chains , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.
[18] M. Gruning,et al. Implementation and testing of Lanczos-based algorithms for Random-Phase Approximation eigenproblems , 2011, 1102.3909.
[19] Ralph Gebauer,et al. turboTDDFT - A code for the simulation of molecular spectra using the Liouville-Lanczos approach to time-dependent density-functional perturbation theory , 2011, Comput. Phys. Commun..
[20] Y. Ping,et al. Ab initio calculations of absorption spectra of semiconducting nanowires within many-body perturbation theory , 2012 .
[21] Ren-Cang Li,et al. A block variational procedure for the iterative diagonalization of non-Hermitian random-phase approximation matrices. , 2012, The Journal of chemical physics.
[22] Y. Ping,et al. Solution of the Bethe-Salpeter equation without empty electronic states: Application to the absorption spectra of bulk systems , 2012 .
[23] David A. Strubbe,et al. BerkeleyGW: A massively parallel computer package for the calculation of the quasiparticle and optical properties of materials and nanostructures , 2011, Comput. Phys. Commun..
[24] Zhaojun Bai,et al. Minimization Principles for the Linear Response Eigenvalue Problem II: Computation , 2013, SIAM J. Matrix Anal. Appl..
[25] Ren-Cang Li,et al. Convergence analysis of Lanczos-type methods for the linear response eigenvalue problem , 2013, J. Comput. Appl. Math..
[26] R. Gebauer,et al. Electron energy loss and inelastic x-ray scattering cross sections from time-dependent density-functional perturbation theory , 2013, 1305.6233.
[27] S. Louie,et al. Optical spectrum of MoS2: many-body effects and diversity of exciton states. , 2013, Physical review letters.
[28] Y. Ping. Electronic Excitations in Light Absorbers for Photoelectrochemical Energy Conversion: First Principles Calculations Based on Many-Body Perturbation Theory , 2013 .
[29] D. Rocca,et al. Ab Initio Optoelectronic Properties of Silicon Nanoparticles: Excitation Energies, Sum Rules, and Tamm-Dancoff Approximation. , 2014, Journal of chemical theory and computation.
[30] Chao Yang,et al. Properties of Definite Bethe–Salpeter Eigenvalue Problems , 2015, CSE 2015.
[31] Ralph Gebauer,et al. turboEELS - A code for the simulation of the electron energy loss and inelastic X-ray scattering spectra using the Liouville-Lanczos approach to time-dependent density-functional perturbation theory , 2015, Comput. Phys. Commun..
[32] Yousef Saad,et al. Efficient Algorithms for Estimating the Absorption Spectrum within Linear Response TDDFT. , 2015, Journal of chemical theory and computation.
[33] L. Reichel,et al. Generalized averaged Gauss quadrature rules for the approximation of matrix functionals , 2016 .
[34] Chao Yang,et al. Structure preserving parallel algorithms for solving the Bethe-Salpeter eigenvalue problem , 2015, 1501.03830.
[35] Chao Yang,et al. BSEPACK User's Guide , 2016, ArXiv.
[36] Peter Benner,et al. Fast iterative solution of the Bethe-Salpeter eigenvalue problem using low-rank and QTT tensor approximation , 2016, J. Comput. Phys..
[37] Chao Yang,et al. Efficient block preconditioned eigensolvers for linear response time-dependent density functional theory , 2017, Comput. Phys. Commun..
[38] Chao Yang,et al. Some Remarks on the Complex J-Symmetric Eigenproblem , 2018 .
[39] Matrices , 2019, Numerical C.