A Structure Preserving Lanczos Algorithm for Computing the Optical Absorption Spectrum

We present a new structure preserving Lanczos algorithm for approximating the optical absorption spectrum in the context of solving the full Bethe--Salpeter equation without Tamm--Dancoff approximation. The new algorithm is based on a structure preserving Lanczos procedure, which exploits the special block structure of Bethe--Salpeter Hamiltonian matrices. A recently developed technique of generalized averaged Gauss quadrature is incorporated to accelerate the convergence. We also establish the connection between our structure preserving Lanczos procedure with several existing Lanczos procedures developed in different contexts. Numerical examples are presented to demonstrate the effectiveness of our Lanczos algorithm.

[1]  I. Tamm Relativistic Interaction of Elementary Particles , 1945 .

[2]  S. Dancoff Non-Adiabatic Meson Theory of Nuclear Forces , 1950 .

[3]  V. Heine,et al.  Electronic structure based on the local atomic environment for tight-binding bands. II , 1972 .

[4]  R. Haydock The recursive solution of the Schrödinger equation , 1980 .

[5]  G. Strinati Application of the Green’s functions method to the study of the optical properties of semiconductors , 1988 .

[6]  P. Benner,et al.  An Implicitly Restarted Symplectic Lanczos Method for the Hamiltonian Eigenvalue Problem , 1997 .

[7]  S. Louie,et al.  Electron-hole excitations and optical spectra from first principles , 2000 .

[8]  A. ADoefaa,et al.  ? ? ? ? f ? ? ? ? ? , 2003 .

[9]  David S. Watkins,et al.  On Hamiltonian and symplectic Lanczos processes , 2004 .

[10]  R. Gebauer,et al.  Efficient approach to time-dependent density-functional perturbation theory for optical spectroscopy. , 2005, Physical review letters.

[11]  Miodrag M. Spalevic On generalized averaged Gaussian formulas , 2007, Math. Comput..

[12]  Gene H. Golub,et al.  Matrices, moments, and quadrature , 2007, Milestones in Matrix Computation.

[13]  Y. Saad,et al.  Turbo charging time-dependent density-functional theory with Lanczos chains. , 2006, The Journal of chemical physics.

[14]  A. Marini,et al.  Exciton-plasmon States in nanoscale materials: breakdown of the Tamm-Dancoff approximation. , 2008, Nano letters.

[15]  G. Golub,et al.  Matrices, Moments and Quadrature with Applications , 2009 .

[16]  D. Lu,et al.  Ab initio calculations of optical absorption spectra: solution of the Bethe-Salpeter equation within density matrix perturbation theory. , 2010, The Journal of chemical physics.

[17]  Y. Saad,et al.  Harnessing molecular excited states with Lanczos chains , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[18]  M. Gruning,et al.  Implementation and testing of Lanczos-based algorithms for Random-Phase Approximation eigenproblems , 2011, 1102.3909.

[19]  Ralph Gebauer,et al.  turboTDDFT - A code for the simulation of molecular spectra using the Liouville-Lanczos approach to time-dependent density-functional perturbation theory , 2011, Comput. Phys. Commun..

[20]  Y. Ping,et al.  Ab initio calculations of absorption spectra of semiconducting nanowires within many-body perturbation theory , 2012 .

[21]  Ren-Cang Li,et al.  A block variational procedure for the iterative diagonalization of non-Hermitian random-phase approximation matrices. , 2012, The Journal of chemical physics.

[22]  Y. Ping,et al.  Solution of the Bethe-Salpeter equation without empty electronic states: Application to the absorption spectra of bulk systems , 2012 .

[23]  David A. Strubbe,et al.  BerkeleyGW: A massively parallel computer package for the calculation of the quasiparticle and optical properties of materials and nanostructures , 2011, Comput. Phys. Commun..

[24]  Zhaojun Bai,et al.  Minimization Principles for the Linear Response Eigenvalue Problem II: Computation , 2013, SIAM J. Matrix Anal. Appl..

[25]  Ren-Cang Li,et al.  Convergence analysis of Lanczos-type methods for the linear response eigenvalue problem , 2013, J. Comput. Appl. Math..

[26]  R. Gebauer,et al.  Electron energy loss and inelastic x-ray scattering cross sections from time-dependent density-functional perturbation theory , 2013, 1305.6233.

[27]  S. Louie,et al.  Optical spectrum of MoS2: many-body effects and diversity of exciton states. , 2013, Physical review letters.

[28]  Y. Ping Electronic Excitations in Light Absorbers for Photoelectrochemical Energy Conversion: First Principles Calculations Based on Many-Body Perturbation Theory , 2013 .

[29]  D. Rocca,et al.  Ab Initio Optoelectronic Properties of Silicon Nanoparticles: Excitation Energies, Sum Rules, and Tamm-Dancoff Approximation. , 2014, Journal of chemical theory and computation.

[30]  Chao Yang,et al.  Properties of Definite Bethe–Salpeter Eigenvalue Problems , 2015, CSE 2015.

[31]  Ralph Gebauer,et al.  turboEELS - A code for the simulation of the electron energy loss and inelastic X-ray scattering spectra using the Liouville-Lanczos approach to time-dependent density-functional perturbation theory , 2015, Comput. Phys. Commun..

[32]  Yousef Saad,et al.  Efficient Algorithms for Estimating the Absorption Spectrum within Linear Response TDDFT. , 2015, Journal of chemical theory and computation.

[33]  L. Reichel,et al.  Generalized averaged Gauss quadrature rules for the approximation of matrix functionals , 2016 .

[34]  Chao Yang,et al.  Structure preserving parallel algorithms for solving the Bethe-Salpeter eigenvalue problem , 2015, 1501.03830.

[35]  Chao Yang,et al.  BSEPACK User's Guide , 2016, ArXiv.

[36]  Peter Benner,et al.  Fast iterative solution of the Bethe-Salpeter eigenvalue problem using low-rank and QTT tensor approximation , 2016, J. Comput. Phys..

[37]  Chao Yang,et al.  Efficient block preconditioned eigensolvers for linear response time-dependent density functional theory , 2017, Comput. Phys. Commun..

[38]  Chao Yang,et al.  Some Remarks on the Complex J-Symmetric Eigenproblem , 2018 .

[39]  Matrices , 2019, Numerical C.