An Overview of the Oil+Brine Two-Phase System in the Presence of Carbon Dioxide, Methane, and Their Mixture

[1]  A. Mejía,et al.  Impact of morphology on the interfacial tension of liquid-liquid equilibrium interfaces in asymmetric mixtures , 2022, Chemical Physics.

[2]  Yukun Ji,et al.  Interfacial Properties of H2O+CO2+Oil Three-Phase Systems: A Density Gradient Theory Study , 2022, Atmosphere.

[3]  Shuyu Sun,et al.  Bulk and Interfacial Properties of Brine or Alkane in the Presence of Carbon Dioxide, Methane, and Their Mixture , 2022, Industrial & Engineering Chemistry Research.

[4]  Shuyu Sun,et al.  Interfacial properties of the alkane+water system in the presence of carbon dioxide and hydrophobic silica , 2022, Fuel.

[5]  Shuyu Sun,et al.  Interfacial properties of the aromatic hydrocarbon + water system in the presence of hydrophilic silica , 2022, Journal of Molecular Liquids.

[6]  Shuyu Sun,et al.  Overview of the Adsorption and Transport Properties of Water, Ions, Carbon Dioxide, and Methane in Swelling Clays , 2021, ACS Earth and Space Chemistry.

[7]  Shuyu Sun,et al.  Bulk and Interfacial Properties of the Decane + Brine System in the Presence of Carbon Dioxide, Methane, and Their Mixture , 2021, Industrial & Engineering Chemistry Research.

[8]  Shuyu Sun,et al.  Sorption and Diffusion of Methane, Carbon Dioxide, and Their Mixture in Amorphous Polyethylene at High Pressures and Temperatures , 2021 .

[9]  A. Aminian,et al.  Molecular Dynamics Simulations Study on the Shear Viscosity, Density, and Equilibrium Interfacial Tensions of CO2 + Brines and Brines + CO2 + n-Decane Systems. , 2021, The journal of physical chemistry. B.

[10]  Walter G Chapman,et al.  Insights into the mechanisms affecting water/oil interfacial tension as a function of salt types and concentrations , 2020 .

[11]  Shuyu Sun,et al.  Bulk and Interfacial Properties of the Decane + Water System in the Presence of Methane, Carbon Dioxide, and Their Mixture. , 2020, The journal of physical chemistry. B.

[12]  Shuyu Sun,et al.  Adsorption and Diffusion of Carbon Dioxide, Methane, and Their Mixture in Carbon Nanotubes in the Presence of Water , 2020 .

[13]  Qichao Xie,et al.  Effects of salts and silica nanoparticles on oil-brine interfacial properties under hydrocarbon reservoir conditions: A molecular dynamics simulation study , 2020 .

[14]  Shuyu Sun,et al.  Sorption and Diffusion of Methane and Carbon Dioxide in Amorphous Poly(alkyl Acrylates): A Molecular Simulation Study. , 2020, The journal of physical chemistry. B.

[15]  Shuyu Sun,et al.  Bulk and interfacial properties of decane in the presence of carbon dioxide, methane, and their mixture , 2019, Scientific Reports.

[16]  S. Enders,et al.  Solubility of n-Hexane and Setchenov’s Constants in Aqueous Solutions of KCl, NaCl, NaBr, and NaNO3 , 2019, Journal of Chemical & Engineering Data.

[17]  J. Dowdle,et al.  An interfacial statistical associating fluid theory (iSAFT) approach for surface/interfacial tension predictions , 2018, Fluid Phase Equilibria.

[18]  J. I. Siepmann,et al.  Monte Carlo Simulations of Fluid Phase Equilibria and Interfacial Properties for Water/Alkane Mixtures: An Assessment of Nonpolarizable Water Models and of Departures from the Lorentz–Berthelot Combining Rules , 2018, Journal of Chemical & Engineering Data.

[19]  G. Kupgan,et al.  Modeling Amorphous Microporous Polymers for CO2 Capture and Separations. , 2018, Chemical reviews.

[20]  F. Alpak,et al.  Modified Density Gradient Theory for Surfactant Molecules Applied to Oil/Water Interfaces , 2018 .

[21]  G. Mansoori,et al.  The Role of Supercritical/Dense CO2 Gas in Altering Aqueous/Oil Interfacial Properties: A Molecular Dynamics Study , 2018 .

[22]  C. Peters,et al.  A Monte Carlo simulation study of the interfacial tension for water/oil mixtures at elevated temperatures and pressures: Water/n-dodecane, water/toluene, and water/(n-dodecane + toluene) , 2017, Fluid Phase Equilibria.

[23]  Åsmund Ervik,et al.  Prediction of the water/oil interfacial tension from molecular simulations using the coarse-grained SAFT-γ Mie force field , 2017, Fluid Phase Equilibria.

[24]  M. Andersson,et al.  Prediction of aliphatic and aromatic oil-water interfacial tension at temperatures >100 °C using COSMO-RS , 2017, Fluid Phase Equilibria.

[25]  I. Economou,et al.  Predictions of water/oil interfacial tension at elevated temperatures and pressures: A molecular dynamics simulation study with biomolecular force fields , 2017, Fluid Phase Equilibria.

[26]  V. Romanov Greenhouse Gases and Clay Minerals , 2018 .

[27]  T. Underwood,et al.  The Water-Alkane Interface at Various NaCl Salt Concentrations: A Molecular Dynamics Study of the Readily Available Force Fields , 2018, Scientific Reports.

[28]  Jun Zhang,et al.  Effects of the Methane Content on the Water–Oil Interface: Insights from the Molecular Level , 2017 .

[29]  A. Márquez,et al.  Molecular dynamics simulations of the role of salinity and temperature on the hydrocarbon/water interfacial tension , 2017, Theoretical Chemistry Accounts.

[30]  S. Gopinath,et al.  Water Solubility at Saturation for CO2–CH4 Mixtures at 323.2 K and 9.000 MPa , 2017 .

[31]  A. Panagiotopoulos,et al.  Phase Equilibria of Water/CO2 and Water/n-Alkane Mixtures from Polarizable Models. , 2017, The journal of physical chemistry. B.

[32]  A. Firoozabadi,et al.  Tunable Substrate Wettability by Thin Water Layer. , 2016, The journal of physical chemistry. B.

[33]  Mark White,et al.  CO2 Accounting and Risk Analysis for CO2 Sequestration at Enhanced Oil Recovery Sites. , 2016, Environmental science & technology.

[34]  Hongbo Zeng,et al.  Reduction of Water/Oil Interfacial Tension by Model Asphaltenes: The Governing Role of Surface Concentration. , 2016, The journal of physical chemistry. B.

[35]  Junqin Shi,et al.  Reduction in interfacial tension of water–oil interface by supercritical CO2 in enhanced oil recovery processes studied with molecular dynamics simulation , 2016 .

[36]  A. Nikolov,et al.  Enhanced Oil Recovery Driven by Nanofilm Structural Disjoining Pressure: Flooding Experiments and Microvisualization , 2016 .

[37]  A. Panagiotopoulos,et al.  Modeling of CO 2 solubility in single and mixed electrolyte solutions using statistical associating fluid theory , 2016 .

[38]  B. Tohidi,et al.  Measurement and modelling of interfacial tension in methane/water and methane/brine systems at reservoir conditions , 2016 .

[39]  Berk Hess,et al.  GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers , 2015 .

[40]  Lingling Zhao,et al.  Molecular Dynamics Characterizations of the Supercritical CO2–Mediated Hexane–Brine Interface , 2015 .

[41]  A. Galindo,et al.  Modeling of Strong Electrolytes with ePPC-SAFT up to High Temperatures , 2013 .

[42]  Andrzej Anderko,et al.  Modeling Interfacial Tension in Liquid–Liquid Systems Containing Electrolytes , 2013 .

[43]  C. Wick,et al.  Computational study on the effect of alkyl chain length on alkane–water interfacial width , 2013 .

[44]  E. Boek,et al.  Molecular Dynamics Simulations of Asphaltenes at the Oil–Water Interface: From Nanoaggregation to Thin-Film Formation , 2013 .

[45]  Xiaochun Li,et al.  Experimental study of crossover from capillary to viscous fingering for supercritical CO2-water displacement in a homogeneous pore network. , 2013, Environmental science & technology.

[46]  Javier Fernández,et al.  Influence of methane in CO2 transport and storage for CCS technology. , 2012, Environmental science & technology.

[47]  C. Wick,et al.  Computational Investigation of the n-Alkane/Water Interface with Many-Body Potentials: The Effect of Chain Length and Ion Distributions , 2012 .

[48]  A. Bismarck,et al.  Interfacial Tension Measurements of the (H2O + n-Decane + CO2) Ternary System at Elevated Pressures and Temperatures , 2011 .

[49]  D. Resasco,et al.  Amphiphilic silica nanoparticles at the decane-water interface: insights from atomistic simulations. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[50]  Hiroshi Okabe,et al.  Self-accumulation of aromatics at the oil-water interface through weak hydrogen bonding. , 2010, Journal of the American Chemical Society.

[51]  Abass A. Olajire,et al.  CO2 capture and separation technologies for end-of-pipe applications – A review , 2010 .

[52]  Rui Sun,et al.  Prediction of vapor-liquid equilibrium and PVTx properties of geological fluid system with SAFT-LJ EOS including multi-polar contribution. Part I: Application to H2O-CO2 system , 2010 .

[53]  Andrew L. Ferguson,et al.  Solubility and molecular conformations of n-alkane chains in water. , 2009, The journal of physical chemistry. B.

[54]  Joerg R. Jinschek,et al.  Scalable fabrication of carbon nanotube/polymer nanocomposite membranes for high flux gas transport. , 2007, Nano letters.

[55]  S. Akbari,et al.  Interfacial Tension of Toluene + Water + Sodium Dodecyl Sulfate from (20 to 50) °C and pH between 4 and 9 , 2006 .

[56]  Ali Danesh,et al.  Prediction of liquid-liquid interfacial tension in multi-component systems , 2004 .

[57]  W. Goddard,et al.  Molecular Dynamics Study of a Surfactant-Mediated Decane-Water Interface: Effect of Molecular Architecture of Alkyl Benzene Sulfonate , 2004 .

[58]  M. Góral,et al.  Recommended Liquid–Liquid Equilibrium Data. Part 1. Binary Alkane–Water Systems , 2004 .

[59]  J. Hermens,et al.  Aqueous Solubility−Molecular Size Relationships: A Mechanistic Case Study Using C10- to C19-Alkanes , 2002 .

[60]  Jefferson W. Tester,et al.  Computation of the methane-water potential energy hypersurface via ab initio methods , 2001 .

[61]  Susana Zeppieri,et al.  Interfacial Tension of Alkane + Water Systems† , 2001 .

[62]  Athanassios Z. Panagiotopoulos,et al.  New intermolecular potential models for benzene and cyclohexane , 1999 .

[63]  A. Goebel,et al.  Interfacial Tension of the Water/n-Alkane Interface , 1997 .

[64]  T. Guo,et al.  Interfacial Tension of Hydrocarbon + Water/Brine Systems under High Pressure , 1996 .

[65]  Bernard R. Brooks,et al.  Computer simulation of liquid/liquid interfaces. I. Theory and application to octane/water , 1995 .

[66]  Y. Abashkin,et al.  Density functional treatment of water-carbon dioxide van der Waals complex , 1994 .

[67]  E. Franck,et al.  Interfacial tension between water and non-polar fluids up to 473 K and 2800 bar , 1994 .

[68]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[69]  H. J. Ramey,et al.  Surface Tension Of Water-Hydrocarbon Systems At Reservoir Conditions , 1988 .

[70]  Wang Zi-hao,et al.  Estimation of fluid-fluid interfacial tensions of multicomponent mixtures , 1986 .

[71]  G. M. Wilson,et al.  High‐temperature mutual solubilities of hydrocarbons and water. Part I: Benzene, cyclohexane and n‐hexane , 1983 .

[72]  M. T. D. Gama,et al.  The structure and surface tension of the liquid-vapour interface near the upper critical end point of a binary mixture of Lennard-Jones fluids , 1983 .

[73]  R. Aveyard,et al.  Interfacial tensions at alkane-aqueous electrolyte interfaces , 1976 .

[74]  H. Y. Jennings The effect of temperature and pressure on the interfacial tension of benzene-water and normal decane-water , 1967 .

[75]  D. Donahue,et al.  The Boundary Tension at Water-Organic Liquid Interfaces , 1952 .

[76]  Michaels As,et al.  Interfacial tension at elevated pressure and temperature. II Interfacial properties of hydrocarbon-water systems. , 1951 .

[77]  W E ROSE,et al.  The interfacial tension of some hydrocarbons against water. , 1951, The Journal of physical and colloid chemistry.