Generic Cryo-CMOS Device Modeling and EDACompatible Platform for Reliable Cryogenic IC Design

This paper outlines the establishment of a generic cryogenic CMOS database in which key electrical parameters and transfer characteristics of the MOSFETs are quantified as functions of device size, temperature/frequency responses. Meanwhile, comprehensive device statistical study is conducted to evaluate the influence of variation and mismatch effects at low temperatures. Furthermore, by incorporating the Cryo-CMOS compact model into the process design kit (PDK), the cryogenic 4 Kb SRAM, 5-bit flash ADC and 8-bit current steering DAC are designed, and their performance is readily investigated and optimized on the EDA-compatible platform, hence laying a solid foundation for large-scale cryogenic IC design.

[1]  J. Bu,et al.  Modeling of the Subthreshold Swing in Cryogenic MOSFET With the Combination of Gaussian Band Tail and Gaussian Interface State , 2024, IEEE Transactions on Electron Devices.

[2]  E. Charbon,et al.  Analytical Modeling of Cryogenic Subthreshold Currents in 22-nm FDSOI Technology , 2024, IEEE Electron Device Letters.

[3]  E. Lucero,et al.  34.2 A 28-nm Bulk-CMOS IC for Full Control of a Superconducting Quantum Processor Unit-Cell , 2023, 2023 IEEE International Solid- State Circuits Conference (ISSCC).

[4]  Ning Deng,et al.  A Polar-Modulation-Based Cryogenic Qubit State Controller in 28nm Bulk CMOS , 2023, 2023 IEEE International Solid- State Circuits Conference (ISSCC).

[5]  J. Sim,et al.  34.4 A Cryogenic Controller IC for Superconducting Qubits with DRAG Pulse Generation by Direct Synthesis without Using Memory , 2023, 2023 IEEE International Solid- State Circuits Conference (ISSCC).

[6]  B. Govoreanu,et al.  Physics-Based and Closed-Form Model for Cryo-CMOS Subthreshold Swing , 2022, IEEE Transactions on Nanotechnology.

[7]  Yongqi Hu,et al.  Cryo-CMOS Model-Enabled 8-Bit Current Steering DAC Design for Quantum Computing , 2022, 2022 IEEE International Symposium on Circuits and Systems (ISCAS).

[8]  A. Chasin,et al.  Temperature Dependent Mismatch and Variability in a Cryo-CMOS Array with 30k Transistors , 2022, IEEE International Reliability Physics Symposium.

[9]  Tzu-Chiang Chen,et al.  Design Technology Co-Optimization for Cold CMOS Benefits in Advanced Technologies , 2021, 2021 IEEE International Electron Devices Meeting (IEDM).

[10]  Steven Brebels,et al.  A 4.2mW 4K 6-8GHz CMOS LNA for Superconducting Qubit Readout , 2021, 2021 IEEE Asian Solid-State Circuits Conference (A-SSCC).

[11]  C. Hu,et al.  Compact Modeling of Temperature Effects in FDSOI and FinFET Devices Down to Cryogenic Temperatures , 2021, IEEE Transactions on Electron Devices.

[12]  Liujiang Yu,et al.  Designing EDA-Compatible Cryogenic CMOS Platform for Quantum Computing Applications , 2021, 2021 5th IEEE Electron Devices Technology & Manufacturing Conference (EDTM).

[13]  Edoardo Charbon,et al.  Cryogenic CMOS Circuits and Systems: Challenges and Opportunities in Designing the Electronic Interface for Quantum Processors , 2021, IEEE Microwave Magazine.

[14]  Fabio Sebastiano,et al.  CMOS-based cryogenic control of silicon quantum circuits , 2020, Nature.

[15]  Shoumian Chen,et al.  Temperature-Driven Gate Geometry Effects in Nanoscale Cryogenic MOSFETs , 2020, IEEE Electron Device Letters.

[16]  Yu Chen,et al.  29.1 A 28nm Bulk-CMOS 4-to-8GHz ¡2mW Cryogenic Pulse Modulator for Scalable Quantum Computing , 2019, 2019 IEEE International Solid- State Circuits Conference - (ISSCC).

[17]  Arnout Beckers,et al.  Cryogenic MOS Transistor Model , 2018, IEEE Transactions on Electron Devices.

[18]  E. Charbon,et al.  Characterization and Compact Modeling of Nanometer CMOS Transistors at Deep-Cryogenic Temperatures , 2018, IEEE Journal of the Electron Devices Society.

[19]  Torsten Lehmann,et al.  A Self-Calibrated Cryogenic Current Cell for 4.2 K Current Steering D/A Converters , 2017, IEEE Transactions on Circuits and Systems II: Express Briefs.

[20]  T. Nakagawa,et al.  Cryogenic capacitive transimpedance amplifier for astronomical infrared detectors , 2004, IEEE Transactions on Electron Devices.

[21]  Sheng-Fu Tsai,et al.  Temperature-dependent characteristics of polysilicon and diffused resistors , 2003 .

[22]  C. Enz,et al.  MOS transistor modeling for RF IC design , 2000, IEEE Journal of Solid-State Circuits.

[23]  R.K. Kirschman,et al.  Low-temperature electronics , 1990, IEEE Circuits and Devices Magazine.

[24]  Marcel J. M. Pelgrom,et al.  Matching properties of MOS transistors , 1989 .

[25]  P. Tasker,et al.  Importance of source and drain resistance to the maximum f/sub T/ of millimeter-wave MODFETs , 1989, IEEE Electron Device Letters.

[26]  Yongqi Hu,et al.  Cryogenic CMOS RF Device Modeling for Scalable Quantum Computer Design , 2022, IEEE Journal of the Electron Devices Society.

[27]  Shaorui Li,et al.  Cryogenic Electronics Development for High-Energy Physics: An Overview of Design Considerations, Benefits, and Unique Challenges , 2021, IEEE Solid-State Circuits Magazine.

[28]  E. Charbon Cryo-CMOS Electronics For Quantum Computing: Bringing Classical Electronics Closer To Qubits In Space And Temperature , 2021, IEEE Solid-State Circuits Magazine.

[29]  A. Morel,et al.  Cryogenic Current Steering DAC With Mitigated Variability , 2020, IEEE Solid-State Circuits Letters.

[30]  B. Parvais,et al.  Physical Model of Low-Temperature to Cryogenic Threshold Voltage in MOSFETs , 2020, IEEE Journal of the Electron Devices Society.

[31]  Pugach Nataliya,et al.  International roadmap for devices and systems. Cryogenic electronics and quantum information processing. 2018 Update , 2019 .

[32]  M. B. Yelten,et al.  Statistical MOSFET Modeling Methodology for Cryogenic Conditions , 2019, IEEE Transactions on Electron Devices.

[33]  Edoardo Charbon,et al.  Cryo-CMOS Circuits and Systems for Quantum Computing Applications , 2018, IEEE Journal of Solid-State Circuits.