Bounds on regeneration times and convergence rates for Markov chains fn1 fn1 Work supported in part

[1]  S. F. Jarner,et al.  Geometric ergodicity of Metropolis algorithms , 2000 .

[2]  J. Rosenthal,et al.  Shift-coupling and convergence rates of ergodic averages , 1997 .

[3]  Mark Jerrum,et al.  The Markov chain Monte Carlo method: an approach to approximate counting and integration , 1996 .

[4]  Richard L. Tweedie,et al.  Geometric Convergence Rates for Stochastically Ordered Markov Chains , 1996, Math. Oper. Res..

[5]  R. Tweedie,et al.  Rates of convergence of the Hastings and Metropolis algorithms , 1996 .

[6]  J. Rosenthal Minorization Conditions and Convergence Rates for Markov Chain Monte Carlo , 1995 .

[7]  Ravi Kannan,et al.  Markov chains and polynomial time algorithms , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[8]  S. Meyn,et al.  Computable Bounds for Geometric Convergence Rates of Markov Chains , 1994 .

[9]  R. Tweedie,et al.  Subgeometric Rates of Convergence of f-Ergodic Markov Chains , 1994, Advances in Applied Probability.

[10]  Richard L. Tweedie,et al.  Markov Chains and Stochastic Stability , 1993, Communications and Control Engineering Series.

[11]  T. Lindvall Lectures on the Coupling Method , 1992 .

[12]  P. Diaconis,et al.  Geometric Bounds for Eigenvalues of Markov Chains , 1991 .

[13]  E. Nummelin General irreducible Markov chains and non-negative operators: Notes and comments , 1984 .

[14]  K. Athreya,et al.  A New Approach to the Limit Theory of Recurrent Markov Chains , 1978 .