Counting lattice triangulations
暂无分享,去创建一个
[1] E. Szemerédi,et al. Crossing-Free Subgraphs , 1982 .
[2] Jörg Rambau,et al. TOPCOM: Triangulations of Point Configurations and Oriented Matroids , 2002 .
[3] David Avis,et al. Reverse Search for Enumeration , 1996, Discret. Appl. Math..
[4] Mark Jerrum,et al. The Markov chain Monte Carlo method: an approach to approximate counting and integration , 1996 .
[5] Stefan Felsner,et al. Markov chains for linear extensions, the two-dimensional case , 1997, SODA '97.
[6] Emile E. Anclin. An upper bound for the number of planar lattice triangulations , 2003, J. Comb. Theory, Ser. A.
[7] Mark de Berg,et al. Computational geometry: algorithms and applications , 1997 .
[8] Herbert Edelsbrunner,et al. An acyclicity theorem for cell complexes ind dimension , 1990, Comb..
[9] S. Yu. Orevkov. Asymptotic Number of Triangulations with Vertices in Z2 , 1999, J. Comb. Theory, Ser. A.
[10] Michael Joswig,et al. Polymake: an approach to modular software design in computational geometry , 2001, SCG '01.
[11] Raimund Seidel,et al. A better upper bound on the number of triangulations of a planar point set , 2003, J. Comb. Theory, Ser. A.
[12] Ehrhard Behrends,et al. Introduction to Markov Chains , 2000 .
[13] Richard M. Wilson,et al. A course in combinatorics , 1992 .
[14] Carl W. Lee,et al. Subdivisions and Triangulationsof Polytopes , 2004, Handbook of Discrete and Computational Geometry, 2nd Ed..
[15] I. M. Gelʹfand,et al. Discriminants, Resultants, and Multidimensional Determinants , 1994 .
[16] János Pach,et al. Cell decomposition of polytopes by bending , 1988 .
[17] Dimitrios I. Dais. RESOLVING 3-DIMENSIONAL TORIC SINGULARITIES by , 2001 .
[18] Martin Aigner,et al. Proofs from THE BOOK , 1998 .
[19] G. Ziegler. Lectures on Polytopes , 1994 .
[20] B. Sturmfels. Gröbner bases and convex polytopes , 1995 .
[21] Sergei Bespamyatnikh,et al. An efficient algorithm for enumeration of triangulations , 2002 .
[22] Oswin Aichholzer. The path of a triangulation , 1999, SCG '99.