On standard norm varieties

Let $p$ be a prime integer and $F$ a field of characteristic 0. Let $X$ be the {\em norm variety} of a symbol in the Galois cohomology group $H^{n+1}(F,\mu_p^{\otimes n})$ (for some $n\geq1$), constructed in the proof of the Bloch-Kato conjecture. The main result of the paper affirms that the function field $F(X)$ has the following property: for any equidimensional variety $Y$, the change of field homomorphism $\CH(Y)\to\CH(Y_{F(X)})$ of Chow groups with coefficients in integers localized at $p$ is surjective in codimensions $< (\dim X)/(p-1)$. One of the main ingredients of the proof is a computation of Chow groups of a (generalized) Rost motive (a variant of the main result not relying on this is given in Appendix). Another important ingredient is {\em $A$-triviality} of $X$, the property saying that the degree homomorphism on $\CH_0(X_L)$ is injective for any field extension $L/F$ with $X(L)\ne\emptyset$. The proof involves the theory of rational correspondences reviewed in Appendix.

[1]  D. Nguyen On p-generic splitting varieties for Milnor K -symbols mod p , 2009 .

[2]  A. Vishik Generic points of quadrics and Chow groups , 2007 .

[3]  Richard Elman,et al.  The Algebraic and Geometric Theory of Quadratic Forms , 2008 .

[4]  A. Suslin,et al.  Motivic cohomology of the simplicial motive of a Rost variety , 2010 .

[5]  Alexander Merkurjev,et al.  Motivic decomposition of projective homogeneous varieties and the Krull-Schmidt theorem , 2006 .

[6]  N. Karpenko Weil transfer of algebraic cycles , 2000 .

[7]  R. Fino Around rationality of cycles , 2011, 1111.4143.

[8]  N. Karpenko Criteria of motivic equivalence for quadratic forms and central simple algebras , 2000 .

[9]  Ju. Manin,et al.  CORRESPONDENCES, MOTIFS AND MONOIDAL TRANSFORMATIONS , 1968 .

[10]  A. Suslin,et al.  Norm Varieties , 2006 .

[11]  A. Vishik Rationality of Integral Cycles , 2010 .

[12]  Alexander Grothendieck,et al.  Techniques de construction et théorèmes d'existence en géométrie algébrique IV : les schémas de Hilbert , 1961 .

[13]  M. Rost Chow groups with coefficients , 1996, Documenta Mathematica.

[14]  Vladimir Voevodsky,et al.  On motivic cohomology with Z/l -coefficients , 2008, 0805.4430.

[15]  Nikita A. Karpenko,et al.  Rost projectors and Steenrod operations , 2002, Documenta Mathematica.

[16]  R. Schulze-Pillot,et al.  Quadratic Forms—Algebra, Arithmetic, and Geometry , 2009 .

[17]  Alex Boisvert A New Definition of the Steenrod Operations in Algebraic Geometry , 2008, 0805.1414.

[18]  William Fulton,et al.  Intersection theory, Second Edition , 1998, Ergebnisse der Mathematik und ihrer Grenzgebiete.

[19]  MARKUS ROST,et al.  ON THE BASIC CORRESPONDENCE OF A SPLITTING VARIETY , 2006 .

[20]  K. Zainoulline,et al.  Motivic splitting lemma , 2008, Documenta Mathematica.

[21]  Johan P. Hansen,et al.  INTERSECTION THEORY , 2011 .

[22]  R. Sujatha Birational Motives, I , 2022 .

[23]  N. Karpenko Upper motives of algebraic groups and incompressibility of Severi–Brauer varieties , 2009, 0904.2844.

[24]  R. Fino Around rationality of integral cycles , 2012, 1203.2478.

[25]  A. Suslin,et al.  K-cohomology of Severi-Brauer Varieties and the norm residue homomorphism , 1983 .

[26]  P. Brosnan A short proof of Rost nilpotence via refined correspondences , 2003, Documenta Mathematica.

[27]  K. Zainoulline Special correspondences and Chow traces of Landweber-Novikov operations , 2007, 0708.3747.

[28]  M. Thakur Isotopy and invariants of Albert algebras , 1999 .

[29]  P. Brosnan Steenrod operations in chow theory , 2003 .

[30]  Jean-Pierre Serre,et al.  Rost invariants of simply connected algebraic groups , 2003 .

[31]  V. Voevodsky On motivic cohomology with Z=l-coecients , 2011 .

[32]  Nikita A. Karpenko,et al.  Canonical p-dimension of algebraic groups , 2006 .

[33]  Skip Garibaldi,et al.  Cohomological Invariants: Exceptional Groups and Spin Groups , 2009 .

[34]  A. Merkurjev Unramified elements in cycle modules , 2008 .