The path towards a high-performance solution-processed kesterite solar cell ☆

Abstract Despite the promise of thin-film Cu(In,Ga)(S,Se) 2 (CIGSSe) chalcopyrite and CdTe photovoltaic technologies with respect to reducing cost per watt of solar energy conversion, these approaches rely on elements that are either costly and/or rare in the earth's crust (e.g., In, Ga, Te) or that present toxicity issues (e.g., Cd), thereby potentially limiting these technologies in terms of future cost reduction and production growth. In order to develop a photovoltaic technology that is truly compatible with terawatt deployment, it is desirable to consider material systems that employ less toxic and lower cost elements, while maintaining the advantages of the chalcopyrite and CdTe materials with respect to appropriate direct band gap tunability over the solar spectrum, high device performance (e.g., >10% power conversion efficiency) and compatibility with low-cost manufacturing. In this review, the development of kesterite-based Cu 2 ZnSn(S,Se) 4 (CZTSSe) thin-film solar cells, in which the indium and gallium from CIGSSe are replaced by the readily available elements zinc and tin, will be reviewed. While vacuum-deposited devices have enabled optimization within the compositional phase space and yielded selenium-free CZTS device efficiencies of as high as 6.8%, more recently a liquid-based approach has been described that has enabled deposition of CZTSSe devices with power conversion efficiency of 9.7%, bringing the kesterite-based technology into a range of potential commercial interest. Electrical characterization studies on these high-performance CZTSSe cells reveal some of the key loss mechanisms (e.g., dominant interface recombination, high series resistance and low minority carrier lifetime) that limit the cell performance. Further elucidation of these mechanisms, as well as building an understanding of long-term device stability, are required to help propel this relatively new technology forward.

[1]  M. Kurihara,et al.  Kesterite absorber layer uniformity from electrodeposited pre‐cursors , 2009 .

[2]  J. Sites,et al.  Diode quality factor determination for thin-film solar cells , 1989 .

[3]  Rommel Noufi,et al.  SHORT COMMUNICATION: ACCELERATED PUBLICATION: Diode characteristics in state‐of‐the‐art ZnO/CdS/Cu(In1−xGax)Se2 solar cells , 2005 .

[4]  Y. Romanyuk,et al.  Phase relations in the quasi-binary Cu2GeS3-ZnS and quasi-ternary Cu2S-Zn(Cd)S-GeS2 systems and crystal structure of Cu2ZnGeS4 , 2005 .

[5]  J. Sites,et al.  Efficiency limitations for wide-band-gap chalcopyrite solar cells , 2005 .

[6]  M. Burgelman,et al.  Effects of the Au/CdTe back contact on IV and CV characteristics of Au/CdTe/CdS/TCO solar cells. , 1997 .

[7]  H. Katagiri,et al.  Preparation and evaluation of Cu2ZnSnS4 thin films by sulfurization of EB evaporated precursors , 1997 .

[8]  H. Haeuseler,et al.  Far infrared studies on stannite and wurtzstannite type compounds , 1991 .

[9]  Rakesh Agrawal,et al.  Synthesis of Cu2ZnSnS4 nanocrystal ink and its use for solar cells. , 2009, Journal of the American Chemical Society.

[10]  P. Escribano,et al.  Cu2ZnSnS4 films deposited by a soft-chemistry method , 2009 .

[11]  B. Rezig,et al.  Fabrication and characterization of Cu2ZnSnS4 thin films deposited by spray pyrolysis technique , 2007 .

[12]  Yafei Zhang,et al.  Hot-injection synthesis and characterization of quaternary Cu2ZnSnSe4 nanocrystals , 2010 .

[13]  A. D. Cunha,et al.  Influence of selenization pressure on the growth of Cu2ZnSnSe4 films from stacked metallic layers , 2010 .

[14]  M. Yamazaki,et al.  Preparation of Cu2ZnSnS4 thin films by sulfurization of stacked metallic layers , 2008 .

[15]  Q. Guo,et al.  Influence of composition ratio on properties of Cu2ZnSnS4 thin films fabricated by co-evaporation , 2010 .

[16]  A. D. Cunha,et al.  Morphological and structural characterization of Cu2ZnSnSe4 thin films grown by selenization of elemental precursor layers , 2009 .

[17]  Hisao Uchiki,et al.  Preparation of Cu2ZnSnS4 thin films by sulfurizing sol–gel deposited precursors , 2007 .

[18]  M. Tovar,et al.  A neutron diffraction study of the stannite-kesterite solid solution series , 2007 .

[19]  M. Yamazaki,et al.  Preparation of Cu2ZnSnS4 thin films by sulfurization of co-electroplated Cu-Zn-Sn precursors , 2009 .

[20]  P. Dale,et al.  Synthesis and characterization of Cu2ZnSnS4 absorber layers by an electrodeposition-annealing route , 2009 .

[21]  B. Emmerson "Ouch-ouch" disease: the osteomalacia of cadmium nephropathy. , 1970, Annals of internal medicine.

[22]  M. Kasuya Recent epidemiological studies on itai-itai disease as a chronic cadmium poisoning in Japan. , 2000 .

[23]  D. Meissner,et al.  Monograin materials for solar cells , 2009 .

[24]  Hideaki Araki,et al.  Preparation of Cu2ZnSnS4 thin films by sulfurizing electroplated precursors , 2009 .

[25]  H. Katagiri,et al.  The Influence of the Composition Ratio on CZTS-based Thin Film Solar Cells , 2009 .

[26]  Aron Walsh,et al.  Crystal and electronic band structure of Cu2ZnSnX4 (X=S and Se) photovoltaic absorbers: First-principles insights , 2009 .

[27]  S. Taylor,et al.  The continental crust : its composition and evolution : an examination of the geochemical record preserved in sedimentary rocks , 1985 .

[28]  Vahid Akhavan,et al.  Synthesis of Cu(2)ZnSnS(4) nanocrystals for use in low-cost photovoltaics. , 2009, Journal of the American Chemical Society.

[29]  H. Ogawa,et al.  Fabrication of Cu2ZnSnS4 thin films by co-evaporation , 2006 .

[30]  D. Cahen,et al.  How Polycrystalline Devices Can Outperform Single‐Crystal Ones: Thin Film CdTe/CdS Solar Cells , 2004 .

[31]  Enn Mellikov,et al.  Sulfur-containing Cu2ZnSnSe4 monograin powders for solar cells , 2010 .

[32]  D. Mitzi,et al.  Thermally evaporated Cu2ZnSnS4 solar cells , 2010 .

[33]  A. Katsui,et al.  Thermal analysis and synthesis from the melts of Cu-based quaternary compounds Cu–III–IV–VI4 and Cu2–II–IV–VI4 (II=Zn, Cd; III=Ga, In; IV=Ge, Sn; VI=Se) , 2000 .

[34]  B. Marsen,et al.  Cu2ZnSnS4 thin film solar cells by fast coevaporation , 2011 .

[35]  Kunihiko Tanaka,et al.  Characterization of Cu2ZnSnS4 thin films prepared by photo-chemical deposition , 2006 .

[36]  Hyesun Yoo,et al.  Growth of Cu2ZnSnS4 thin films using sulfurization of stacked metallic films , 2010 .

[37]  S. Bereznev,et al.  Cu2ZnSnSe4 films by selenization of Sn―Zn―Cu sequential films , 2009 .

[38]  Teodor K. Todorov,et al.  Direct Liquid Coating of Chalcopyrite Light‐Absorbing Layers for Photovoltaic Devices , 2010 .

[39]  Ryo Kimura,et al.  Cu2ZnSnS4-type thin film solar cells using abundant materials , 2007 .

[40]  W. Warta,et al.  Solar cell efficiency tables (version 36) , 2010 .

[41]  D. Mitzi,et al.  Progress towards marketable earth-abundant chalcogenide solar cells , 2011 .

[42]  J. M. Stewart,et al.  Kesterite, Cu<2) (Zn,Fe)SnS<4) , and stannite, Cu<2) (Fe,Zn)SnS<4) , structurally similar but distinct minerals , 1978 .

[43]  Kunihiko Tanaka,et al.  Epitaxial growth of Cu2ZnSnS4 thin films by pulsed laser deposition , 2006 .

[44]  Kunihiko Tanaka,et al.  Preparation of Cu2ZnSnS4 thin film solar cells under non‐vacuum condition , 2009 .

[45]  D. Mitzi N4H9Cu7S4: a hydrazinium-based salt with a layered Cu7S4- framework. , 2007, Inorganic chemistry.

[46]  A. Ennaoui,et al.  The crystallisation of Cu2ZnSnS4 thin film solar cell absorbers from co-electroplated Cu-Zn-Sn precursors , 2009 .

[47]  Brian E. McCandless,et al.  Device and material characterization of Cu(InGa)Se2 solar cells with increasing band gap , 1996 .

[48]  V. Raja,et al.  Effect of copper salt and thiourea concentrations on the formation of Cu2ZnSnS4 thin films by spray pyrolysis , 2010 .

[49]  A. D. Cunha,et al.  Growth and Raman scattering characterization of Cu2ZnSnS4 thin films , 2009 .

[50]  Kunihiko Tanaka,et al.  Characterization of Cu2ZnSnS4 Thin Films Prepared by Photo-Chemical Deposition , 2005 .

[51]  H. Schock,et al.  Multi-stage evaporation of Cu2ZnSnS4 thin films , 2009 .

[52]  R. Miles,et al.  Cu2ZnSnSe4 thin film solar cells produced by selenisation of magnetron sputtered precursors , 2009 .

[53]  H. Katagiri Cu2ZnSnS4 thin film solar cells , 2005 .

[54]  J. Madarász,et al.  Thermal decomposition of thiourea complexes of Cu(I), Zn(II), and Sn(II) chlorides as precursors for the spray pyrolysis deposition of sulfide thin films , 2001 .

[55]  Jinwoo Lee,et al.  The determination of carrier mobilities in CIGS photovoltaic devices using high-frequency admittance measurements , 2005 .

[56]  A Paul Alivisatos,et al.  Materials availability expands the opportunity for large-scale photovoltaics deployment. , 2009, Environmental science & technology.

[57]  Hisao Uchiki,et al.  Cu2ZnSnS4 thin film solar cells prepared by non-vacuum processing , 2009 .

[58]  H. Card,et al.  Use of VOC/JSC measurements for determination of barrier height under illumination and for fill-factor calculations in Schottky-barrier solar cells , 1980 .

[59]  S. Wagner,et al.  Multicomponent tetrahedral compounds for solar cells , 1977 .

[60]  I. Olekseyuk,et al.  Phase equilibria in the Cu2S–ZnS–SnS2 system , 2004 .

[61]  Gregory Phipps,et al.  Indium and Gallium: long-term supply , 2008 .

[62]  Enn Mellikov,et al.  Cu2Zn1–x Cdx Sn(Se1–y Sy)4 solid solutions as absorber materials for solar cells , 2008 .

[63]  D. Milliron,et al.  Solution-Processed Metal Chalcogenide Films for p-Type Transistors , 2006 .

[64]  H. Katagiri,et al.  Solar cell without environmental pollution by using CZTS thin film , 2003, 3rd World Conference onPhotovoltaic Energy Conversion, 2003. Proceedings of.

[65]  Kunihiko Tanaka,et al.  Cu2ZnSnS4 Thin Films Annealed in H2S Atmosphere for Solar Cell Absorber Prepared by Pulsed Laser Deposition , 2008 .

[66]  W. Schäfer,et al.  Tetrahedral quaternary chalcogenides of the type Cu2IIIVS4(Se4) , 1974 .

[67]  J. Arbiol,et al.  Synthesis of quaternary chalcogenide nanocrystals: stannite Cu(2)Zn(x)Sn(y)Se(1+x+2y). , 2010, Journal of the American Chemical Society.

[68]  I. Olekseyuk,et al.  Single crystal preparation and crystal structure of the Cu2Zn/Cd, Hg/SnSe4 compounds , 2002 .

[69]  A. Zunger,et al.  The electronic consequences of multivalent elements in inorganic solar absorbers: Multivalency of Sn in Cu2ZnSnS4 , 2010 .

[70]  H. Schock,et al.  In-situ investigation of the kesterite formation from binary and ternary sulphides , 2009 .

[71]  Steven S. Hegedus,et al.  Thin‐film solar cells: device measurements and analysis , 2004 .

[72]  A. Ennaoui,et al.  Cu2ZnSnS4 thin film solar cells from electroplated precursors: Novel low-cost perspective , 2009 .

[73]  Tadashi Ito,et al.  Enhanced Conversion Efficiencies of Cu2ZnSnS4-Based Thin Film Solar Cells by Using Preferential Etching Technique , 2008 .

[74]  A. Afzali,et al.  High-mobility ultrathin semiconducting films prepared by spin coating , 2004, Nature.

[75]  V. Raja,et al.  Effect of post-deposition annealing on the growth of Cu2ZnSnSe4 thin films for a solar cell absorber layer , 2008 .

[76]  Hyesun Yoo,et al.  Comparative study of Cu2ZnSnS4 film growth , 2011 .

[77]  J. Yun,et al.  Single step electrosynthesis of Cu2ZnSnS4 (CZTS) thin films for solar cell application , 2010 .

[78]  I. Forbes,et al.  New routes to sustainable photovoltaics: evaluation of Cu2ZnSnS4 as an alternative absorber material , 2008 .

[79]  S. Miyajima,et al.  Development of thin film solar cell based on Cu2ZnSnS4 thin films , 2001 .

[80]  Badrul Munir,et al.  Single step preparation of quaternary Cu2ZnSnSe4 thin films by RF magnetron sputtering from binary chalcogenide targets , 2007 .

[81]  E. Xie,et al.  Cu2ZnSnS4 thin films prepared by sulfurization of ion beam sputtered precursor and their electrical and optical properties , 2006 .

[82]  D. Mitzi,et al.  Loss mechanisms in hydrazine-processed Cu2ZnSn(Se,S)4 solar cells , 2010 .

[83]  Satoshi Nakamura,et al.  Electronic structure and phase stability of In-free photovoltaic semiconductors, Cu 2 ZnSnSe 4 and Cu 2 ZnSnS 4 by first-principles calculation , 2009 .

[84]  Kyungkon Kim,et al.  Electrical and optical properties of Cu2ZnSnS4 thin films prepared by rf magnetron sputtering process , 2003 .

[85]  H. Schock,et al.  On the Sn loss from thin films of the material system Cu-Zn-Sn-S in high vacuum , 2010 .

[86]  Marianna Kemell,et al.  Thin Film Deposition Methods for CuInSe 2 Solar Cells , 2005 .

[87]  Björn A. Andersson Materials availability for large-scale thin-film photovoltaics , 2000 .

[88]  H. Ogawa,et al.  Preparation of Cu2ZnSnS4 thin films by hybrid sputtering , 2005 .

[89]  H. Hahn,et al.  Über quaternäre Chalkogenide des Germaniums und Zinns , 2004, Naturwissenschaften.

[90]  David B Mitzi,et al.  High‐Efficiency Solar Cell with Earth‐Abundant Liquid‐Processed Absorber , 2010, Advanced materials.

[91]  Wei Liu,et al.  A High‐Efficiency Solution‐Deposited Thin‐Film Photovoltaic Device , 2008 .

[92]  Hideaki Araki,et al.  Development of CZTS-based thin film solar cells , 2009 .

[93]  D. Meissner,et al.  Temperature dependence of Cu2ZnSn(SexS1−x)4 monograin solar cells , 2010 .

[94]  Takeshi Kobayashi,et al.  Investigation of Cu2ZnSnS4-Based Thin Film Solar Cells Using Abundant Materials , 2005 .

[95]  A. Kellock,et al.  Torwards marketable efficiency solution-processed kesterite and chalcopyrite photovoltaic devices , 2010, 2010 35th IEEE Photovoltaic Specialists Conference.

[96]  Enn Mellikov,et al.  Formation of Cu2ZnSnSe4 thin films by selenization of electrodeposited stacked binary alloy layers , 2010 .

[97]  A. Mette,et al.  A review and comparison of different methods to determine the series resistance of solar cells , 2007 .

[98]  S. Schorr Structural aspects of adamantine like multinary chalcogenides , 2007 .

[99]  Kentaro Ito,et al.  Sprayed films of stannite Cu2ZnSnS4 , 1996 .

[100]  T. Raadik,et al.  Potential fluctuations in Cu2ZnSnSe4 solar cells studied by temperature dependence of quantum efficiency curves , 2010 .

[101]  D. Mitzi Solution Processing of Chalcogenide Semiconductors via Dimensional Reduction , 2008 .

[102]  Zhaojun Lin,et al.  Band-gap tunable (Cu2Sn)(x/3)Zn(1-x)S nanoparticles for solar cells. , 2010, Chemical communications.

[103]  Ronald A. Sinton,et al.  A quasi-steady-state open-circuit voltage method for solar cell characterization , 2000 .

[104]  P. Dale,et al.  A 3.2% efficient Kesterite device from electrodeposited stacked elemental layers , 2010 .

[105]  V. Raja,et al.  Growth and characterization of co-evaporated Cu2ZnSnSe4 thin films for photovoltaic applications , 2008 .

[106]  Dong Xu,et al.  Fabrication of Cu2ZnSnS4 screen printed layers for solar cells , 2010 .

[107]  Kentaro Ito,et al.  Electrical and Optical Properties of Stannite-Type Quaternary Semiconductor Thin Films , 1988 .

[108]  A. Kellock,et al.  Optimization of CIGS-Based PV Device through Antimony Doping , 2010 .

[109]  S. Pawar,et al.  Effect of laser incident energy on the structural, morphological and optical properties of Cu2ZnSnS4 (CZTS) thin films , 2010 .

[110]  B. Munir,et al.  Pulsed laser deposition of quaternary Cu2ZnSnSe4 thin films , 2007 .

[111]  J. Yun,et al.  Determination of band gap energy (Eg) of Cu2ZnSnSe4 thin films: On the discrepancies of reported band gap values , 2010 .

[112]  Uwe Rau,et al.  Electronic properties of CuGaSe2-based heterojunction solar cells. Part I. Transport analysis , 2000 .

[113]  Vasilis Fthenakis,et al.  Sustainability of photovoltaics: The case for thin-film solar cells , 2009 .

[114]  C. Surya,et al.  Preparation of Cu2ZnSnS4 films by electrodeposition using ionic liquids , 2010 .