Accurate isoform discovery with IsoQuant using long reads

[1]  Hagen U. Tilgner,et al.  ScisorWiz: visualizing differential isoform expression in single-cell long-read data , 2022, bioRxiv.

[2]  Hagen U. Tilgner,et al.  Sequencing of individual barcoded cDNAs using Pacific Biosciences and Oxford Nanopore Technologies reveals platform-specific error patterns , 2022, Genome research.

[3]  Stephen R. Williams,et al.  A spatially resolved brain region- and cell type-specific isoform atlas of the postnatal mouse brain , 2021, Nature Communications.

[4]  James C. Wright,et al.  GENCODE 2021 , 2020, Nucleic Acids Res..

[5]  Veli Mäkinen,et al.  Accurate spliced alignment of long RNA sequencing reads , 2020, bioRxiv.

[6]  I. Birol,et al.  RNA-Bloom enables reference-free and reference-guided sequence assembly for single-cell transcriptomes , 2020, Genome research.

[7]  Ali Mortazavi,et al.  Swan: a library for the analysis and visualization of long-read transcriptomes , 2020, bioRxiv.

[8]  Inanc Birol,et al.  Trans-NanoSim characterizes and simulates nanopore RNA-sequencing data , 2020, GigaScience.

[9]  D. Burt,et al.  Illuminating the dark side of the human transcriptome with long read transcript sequencing , 2020, BMC Genomics.

[10]  Paul Medvedev,et al.  Error correction enables use of Oxford Nanopore technology for reference-free transcriptome analysis , 2020, Nature Communications.

[11]  Angela N. Brooks,et al.  Full-length transcript characterization of SF3B1 mutation in chronic lymphocytic leukemia reveals downregulation of retained introns , 2018, Nature Communications.

[12]  G. Pertea,et al.  GFF Utilities: GffRead and GffCompare. , 2020, F1000Research.

[13]  Laura H. Tung,et al.  Quantifying the benefit offered by transcript assembly with Scallop-LR on single-molecule long reads , 2019, Genome Biology.

[14]  Geo Pertea,et al.  Transcriptome assembly from long-read RNA-seq alignments with StringTie2 , 2019, Genome Biology.

[15]  Jeremy R. B. Newman,et al.  tappAS: a comprehensive computational framework for the analysis of the functional impact of differential splicing , 2019, bioRxiv.

[16]  Bo Liu,et al.  deSALT: fast and accurate long transcriptomic read alignment with de Bruijn graph-based index , 2019, Genome Biology.

[17]  Ali Mortazavi,et al.  TranscriptClean: variant-aware correction of indels, mismatches and splice junctions in long-read transcripts , 2018, Bioinform..

[18]  Angela N. Brooks,et al.  Nanopore native RNA sequencing of a human poly(A) transcriptome , 2018, bioRxiv.

[19]  Ahmed Mahfouz,et al.  Single-cell isoform RNA sequencing characterizes isoforms in thousands of cerebellar cells , 2018, Nature Biotechnology.

[20]  M. Tress,et al.  Corrigendum: SQANTI: extensive characterization of long-read transcript sequences for quality control in full-length transcriptome identification and quantification. , 2018, Genome research.

[21]  Heng Li,et al.  Minimap2: pairwise alignment for nucleotide sequences , 2017, Bioinform..

[22]  Hugh E. Olsen,et al.  Nanopore long-read RNAseq reveals widespread transcriptional variation among the surface receptors of individual B cells , 2017, Nature Communications.

[23]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..

[24]  Kiyoshi Asai,et al.  PBSIM: PacBio reads simulator - toward accurate genome assembly , 2013, Bioinform..

[25]  Sergey I. Nikolenko,et al.  SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing , 2012, J. Comput. Biol..

[26]  E. Birney,et al.  Velvet: algorithms for de novo short read assembly using de Bruijn graphs. , 2008, Genome research.