On Line Computer Control Techniques and Their Application to Re-entry Aerospace Vehicle Control

Publisher Summary This chapter presents on line computer control techniques and their application to re-entry aerospace vehicle control. It highlights the problem of controlling processes under the condition of uncertain changes in the process to be controlled. The chapter presents the approach for the development of tools necessary to perform adaptation in a control problem. There are three phases to this approach to adaptive controls: (1) parameter estimation, (2) state-variable estimation, and (3) computation of optimal controls. The chapter highlights the methods presently available in the area of optimal control computations. These methods are for the linear process case with quadratic performance criterion.

[1]  P. B. Brentani,et al.  On computing optimal control with inequality constaints , 1963 .

[2]  M. Levin Optimum Estimation of Impulse Response in the Presence of Noise , 1960 .

[3]  T. Greville,et al.  Some Applications of the Pseudoinverse of a Matrix , 1960 .

[4]  R. Wingrove SURVEY OF ATMOSPHERE RE-ENTRY GUIDANCE AND CONTROL METHODS , 1963 .

[5]  P. A. Gainer A METHOD FOR COMPUTING THE EFFECT OF AN ADDITIONAL OBSERVATION ON A PREVIOUS LEAST-SQUARES ESTIMATE , 1963 .

[6]  W. Kipiniak,et al.  Dynamic optimization and control , 1961 .

[7]  Ill C. W. Merriam Use of a mathematical error criterion in the design of adaptive control systems , 1960 .

[8]  J. B. Rosen The Gradient Projection Method for Nonlinear Programming. Part I. Linear Constraints , 1960 .

[9]  S. Katz A Discrete Version of Pontrjagin's Maximum Principle† , 1962 .

[10]  A. Bryson,et al.  Optimization and Control of Nonlinear Systems Using the Second Variation , 1963 .

[11]  H. C. Hsieh,et al.  Synthesis of Adaptive Control Systems by Function Space Methods , 1965 .

[12]  D. Joseph,et al.  On linear control theory , 1961, Transactions of the American Institute of Electrical Engineers, Part II: Applications and Industry.

[13]  R Bellman,et al.  A COMPUTATIONAL PROCEDURE FOR OPTIMAL SYSTEM DESIGN AND UTILIZATION. , 1962, Proceedings of the National Academy of Sciences of the United States of America.

[14]  J. S. Meditch,et al.  On the real-time control of time-varying linear systems , 1962 .

[15]  R. Penrose On best approximate solutions of linear matrix equations , 1956, Mathematical Proceedings of the Cambridge Philosophical Society.

[16]  Harry Greenberg A survey of methods for determining stability parameters of an airplane from dynamic flight measurements , 1951 .

[17]  Gene F. Franklin,et al.  A General Solution for Linear, Sampled-Data Control , 1963 .

[18]  J. J. Flokentin Partial Observability and Optimal Control , 1962 .

[19]  R. Penrose A Generalized inverse for matrices , 1955 .

[20]  Robert Hugh Macmillan,et al.  Progress in control engineering , 1962 .

[21]  R. E. Kalman,et al.  FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS , 1962 .

[22]  J. Aseltine,et al.  A survey of adaptive control systems , 1958 .

[23]  L. A. Zadeh,et al.  On the definition of adaptivity , 1963 .

[24]  J. Becker Re-entry from space. , 1961, Scientific American.

[25]  R. Kerr,et al.  Precision of impulse-response identification based on short, normal operating records , 1961 .

[26]  Yu-Chi Ho Solution Space Approach to Optimal Control Problems , 1961 .

[27]  D. M. Green,et al.  Application of multiple regression analysis to identification of time-varying linear dynamic systems , 1963 .

[28]  Ludwig Braun,et al.  Adaptive control systems , 1959 .

[29]  D. D'Esopo,et al.  A convex programming procedure , 1959 .

[30]  Clifford Hildreth,et al.  A quadratic programming procedure , 1957 .