A Physics-Based Charge-Control Model for InP DHBT Including Current-Blocking Effect
暂无分享,去创建一个
Jin Zhi | Ge Ji | Su Yongbo | Liu Xinyu | Cheng Wei | Chen Gaopeng | Wang Xiantai | Wang Xiantai | L. Xinyu | Jin Zhi | Su Yongbo | Cheng Wei | Ge Ji | Chen Gaopeng
[1] L. Xinyu,et al. High Current Multi-finger InGaAs/InP Double Heterojunction Bipolar Transistor with the Maximum Oscillation Frequency 253 GHz , 2008 .
[2] S. Moinian,et al. VBIC95: An improved vertical, IC bipolar transistor model , 1995, Proceedings of Bipolar/Bicmos Circuits and Technology Meeting.
[3] V. Krozer,et al. Large-Signal Modeling of High-Speed InP DHBTs using Electromagnetic Simulation Based De-embedding , 2006, 2006 IEEE MTT-S International Microwave Symposium Digest.
[4] A. Samelis,et al. Modeling the bias of the dependence of the base-collector capacitance of power heterojunction bipolar transistors , 1999 .
[5] L. Xinyu,et al. High-speed InGaAs/InP double heterostructure bipolar transistor with high breakdown voltage , 2008 .
[6] Munkyo Seo,et al. G-band (140-220 GHz) and W-band (75-110 GHz) InP DHBT medium power amplifiers , 2005, IEEE Transactions on Microwave Theory and Techniques.
[7] M. Schroter,et al. Physics-based minority charge and transit time modeling for bipolar transistors , 1999 .
[8] Jin Zhi,et al. High-breakdown-voltage submicron InGaAs/InP double heterojunction bipolar transistor with f(t)=170 GHz and f(max)=253GHz , 2008 .