Near-Fields in assembled plasmonic nanostructures

[1]  M. Faraday X. The Bakerian Lecture. —Experimental relations of gold (and other metals) to light , 1857, Philosophical Transactions of the Royal Society of London.

[2]  R. Gans,et al.  Über die Form ultramikroskopischer Goldteilchen , 1912 .

[3]  M. Kasha,et al.  The exciton model in molecular spectroscopy , 1965 .

[4]  Yaochun Shen,et al.  SURFACE-ENHANCED SECOND-HARMONIC GENERATION AND RAMAN SCATTERING , 1983 .

[5]  Theo Rasing,et al.  Local-field enhancement on rough surfaces of metals, semimetals, and semiconductors with the use of optical second-harmonic generation , 1984 .

[6]  G. Schatz Theoretical Studies of Surface Enhanced Raman Scattering , 1984 .

[7]  Paul Mulvaney,et al.  Effect of the Solution Refractive Index on the Color of Gold Colloids , 1994 .

[8]  Paul Mulvaney,et al.  Surface Plasmon Spectroscopy of Nanosized Metal Particles , 1996 .

[9]  Novotny,et al.  Local Excitation, Scattering, and Interference of Surface Plasmons. , 1996, Physical review letters.

[10]  Steven R. Emory,et al.  Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering , 1997, Science.

[11]  A. Boccara,et al.  Reflection-mode scanning near-field optical microscopy using an apertureless metallic tip. , 1997, Applied optics.

[12]  J. Yguerabide,et al.  Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications. , 1998, Analytical biochemistry.

[13]  Naomi J. Halas,et al.  Nanoengineering of optical resonances , 1998 .

[14]  M. El-Sayed,et al.  Simulation of the Optical Absorption Spectra of Gold Nanorods as a Function of Their Aspect Ratio and the Effect of the Medium Dielectric Constant , 1999 .

[15]  C. Mirkin Programming the assembly of two- and three-dimensional architectures with DNA and nanoscale inorganic building blocks. , 2000, Inorganic chemistry.

[16]  Louis E. Brus,et al.  Ag Nanocrystal Junctions as the Site for Surface-Enhanced Raman Scattering of Single Rhodamine 6G Molecules , 2000 .

[17]  M. El-Sayed,et al.  Some interesting properties of metals confined in time and nanometer space of different shapes. , 2001, Accounts of chemical research.

[18]  J. Kottmann,et al.  Retardation-induced plasmon resonances in coupled nanoparticles. , 2001, Optics letters.

[19]  Paul Mulvaney,et al.  Drastic reduction of plasmon damping in gold nanorods. , 2002 .

[20]  R. V. Van Duyne,et al.  A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles. , 2002, Journal of the American Chemical Society.

[21]  Stephan Link,et al.  Optical properties and ultrafast dynamics of metallic nanocrystals. , 2003, Annual review of physical chemistry.

[22]  E. Coronado,et al.  The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment , 2003 .

[23]  Harry A. Atwater,et al.  Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides , 2003, Nature materials.

[24]  Bernhard Lamprecht,et al.  Optical properties of two interacting gold nanoparticles , 2003 .

[25]  P. Nordlander,et al.  A Hybridization Model for the Plasmon Response of Complex Nanostructures , 2003, Science.

[26]  Michele Follen,et al.  Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles. , 2003, Cancer research.

[27]  R. Stafford,et al.  Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[28]  David R. Smith,et al.  Interparticle Coupling Effects on Plasmon Resonances of Nanogold Particles , 2003 .

[29]  G. Schatz,et al.  Electromagnetic fields around silver nanoparticles and dimers. , 2004, The Journal of chemical physics.

[30]  G. Wiederrecht,et al.  Near-field photochemical imaging of noble metal nanostructures. , 2005, Nano letters.

[31]  G. Schatz,et al.  Confined plasmons in nanofabricated single silver particle pairs: experimental observations of strong interparticle interactions. , 2005, The journal of physical chemistry. B.

[32]  Thomas Kelly,et al.  Synergistic enhancement of selective nanophotothermolysis with gold nanoclusters: Potential for cancer therapy , 2005, Lasers in surgery and medicine.

[33]  A Paul Alivisatos,et al.  Calibration of dynamic molecular rulers based on plasmon coupling between gold nanoparticles. , 2005, Nano letters.

[34]  Xiaohua Huang,et al.  Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer. , 2005, Nano letters.

[35]  J. West,et al.  Immunotargeted nanoshells for integrated cancer imaging and therapy. , 2005, Nano letters.

[36]  Carsten Sönnichsen,et al.  A molecular ruler based on plasmon coupling of single gold and silver nanoparticles , 2005, Nature Biotechnology.

[37]  D. A. Stuart,et al.  Surface Enhanced Raman Spectroscopy: New Materials, Concepts, Characterization Tools, and Applications , 2005 .

[38]  Jian Zhang,et al.  Plasmon-controlled fluorescence: a new detection technology , 2006, SPIE BiOS.

[39]  P. Jain,et al.  Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. , 2006, The journal of physical chemistry. B.

[40]  P. Jain,et al.  Ultrafast electron relaxation dynamics in coupled metal nanoparticles in aggregates. , 2006, The journal of physical chemistry. B.

[41]  Xiaohua Huang,et al.  Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles. , 2006, Cancer letters.

[42]  Vladimir P Zharov,et al.  Photothermal nanotherapeutics and nanodiagnostics for selective killing of bacteria targeted with gold nanoparticles. , 2006, Biophysical journal.

[43]  D. P. Fromm,et al.  Toward nanometer-scale optical photolithography: utilizing the near-field of bowtie optical nanoantennas. , 2006, Nano letters.

[44]  P. Jain,et al.  Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model. , 2006, The journal of physical chemistry. B.

[45]  Wei Qian,et al.  Ultrafast cooling of photoexcited electrons in gold nanoparticle-thiolated DNA conjugates involves the dissociation of the gold-thiol bond. , 2006, Journal of the American Chemical Society.

[46]  Prashant K. Jain,et al.  On the Universal Scaling Behavior of the Distance Decay of Plasmon Coupling in Metal Nanoparticle Pairs: A Plasmon Ruler Equation , 2007 .

[47]  P. Jain,et al.  Universal scaling of plasmon coupling in metal nanostructures: extension from particle pairs to nanoshells. , 2007, Nano letters.

[48]  R. Bachelot,et al.  Optical properties of metal nanoparticles as probed by photoemission electron microscopy , 2007 .

[49]  Prashant K. Jain,et al.  Surface Plasmon Resonance Sensitivity of Metal Nanostructures : Physical Basis and Universal Scaling in Metal Nanoshells , 2007 .

[50]  Xiaohua Huang,et al.  Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. , 2008, Accounts of chemical research.

[51]  Gabriel Shemer,et al.  Plasmon-resonance-enhanced absorption and circular dichroism. , 2008, Angewandte Chemie.

[52]  F. D. Abajo,et al.  Nonlocal Effects in the Plasmons of Strongly Interacting Nanoparticles, Dimers, and Waveguides , 2008, 0802.0040.

[53]  P. Jain,et al.  Noble metal nanoparticle pairs: effect of medium for enhanced nanosensing. , 2008, Nano letters.

[54]  Prashant K. Jain,et al.  Surface Plasmon Coupling and Its Universal Size Scaling in Metal Nanostructures of Complex Geometry: Elongated Particle Pairs and Nanosphere Trimers , 2008 .

[55]  Romain Quidant,et al.  Plasmon near-field coupling in metal dimers as a step toward single-molecule sensing. , 2009, ACS nano.

[56]  Ronald Walsworth,et al.  Surface plasmon resonance enhanced magneto-optics (SuPREMO): Faraday rotation enhancement in gold-coated iron oxide nanocrystals. , 2009, Nano letters.

[57]  Harald Ditlbacher,et al.  Electron-energy-loss spectra of plasmonic nanoparticles. , 2009, Physical review letters.

[58]  P. Jain,et al.  Coupling of optical resonances in a compositionally asymmetric plasmonic nanoparticle dimer. , 2010, Nano letters.

[59]  Prashant K. Jain,et al.  Plasmonic coupling in noble metal nanostructures , 2010 .

[60]  R. Bachelot,et al.  Quantitative analysis of localized surface plasmons based on molecular probing. , 2010, ACS nano.

[61]  F. D. Sala,et al.  Electromagnetic modelling of the optical behaviour of silver nanospheres on dielectric substrates: The role of a silver buffer layer , 2010 .