Recent advances in the global theory of constant mean curvature surfaces

The theory of complete surfaces of (nonzero) constant mean curvature in $\RR^3$ has progressed markedly in the last decade. This paper surveys a number of these developments in the setting of Alexandrov embedded surfaces; the focus is on gluing constructions and moduli space theory, and the analytic techniques on which these results depend. The last section contains some new results about smoothing the moduli space and about CMC surfaces in asymptotically Euclidean manifolds.

[1]  W. Meeks,et al.  The Topology, Geometry and Conformal Structure of Properly Embedded Minimal Surfaces , 2004, math/0401267.

[2]  I. Herbst,et al.  Perturbations of the Wigner-Von Neumann Potential Leaving the Embedded Eigenvalue Fixed , 2002 .

[3]  A. Ros,et al.  Properly embedded minimal surfaces with finite total curvature , 2002 .

[4]  F. Pacard,et al.  Attaching handles to Bryant surfaces , 2001, math/0112224.

[5]  D. Pollack,et al.  The conformal theory of Alexandrov embedded constant mean curvature surfaces in $R^3$ , 2001, math/0110099.

[6]  R. Ratzkin An end-to-end gluing construction for surfaces of constant mean curvature , 2001 .

[7]  D. Hoffman Clay Mathematics Institute Summer School on the Global Theory of Minimal Surfaces , 2001 .

[8]  J. Sullivan,et al.  TRIUNDULOIDS: EMBEDDED CONSTANT MEAN CURVATURE SURFACES WITH THREE ENDS AND GENUS ZERO , 2001, math/0102183.

[9]  Martin Kilian,et al.  New Constant Mean Curvature Surfaces , 2000, Exp. Math..

[10]  J. Sullivan,et al.  Constant mean curvature surfaces with three ends. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[11]  D. Pollack,et al.  Connected sums of constant mean curvature surfaces in Euclidean 3 space , 1999, math/9905077.

[12]  F. Pacard,et al.  Constant mean curvature surfaces with Delaunay ends , 1998, math/9807039.

[13]  D. Pollack,et al.  The moduli space of complete embedded constant mean curvature surfaces , 1994, dg-ga/9408004.

[14]  Karen K. Uhlenbeck,et al.  Moduli Spaces of Singular Yamabe Metrics , 1994, dg-ga/9406004.

[15]  R. Kusner,et al.  The global structure of constant mean curvature surfaces , 1993 .

[16]  Karsten Große-Brauckmann,et al.  New surfaces of constant mean curvature , 1993 .

[17]  N Kapouleas,et al.  Constant mean curvature surfaces constructed by fusing Wente tori , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[18]  Bruce Solomon,et al.  CONSTANT MEAN-CURVATURE SURFACES IN HYPERBOLIC SPACE , 1992 .

[19]  Bruce Solomon,et al.  The structure of complete embedded surfaces with constant mean curvature , 1989 .

[20]  Michael Struwe,et al.  Plateau's problem and the calculus of variations , 1989 .

[21]  R. Schoen The existence of weak solutions with prescribed singular behavior for a conformally invariant scalar equation , 1988 .

[22]  W. Meeks The topology and geometry of embedded surfaces of constant mean curvature , 1987 .

[23]  Christine Breiner,et al.  Compact constant mean curvature surfaces in Euclidean three-space , 1987, 1210.3394.

[24]  R. Bryant Surfaces of mean curvature one in hyperbolic space , 1987 .

[25]  Henry C. Wente Counterexample to a conjecture of H. Hopf , 1986 .

[26]  E. Shustin Counterexamples to a conjecture of Rokhlin , 1985 .

[27]  Jean-Michel Coron,et al.  Multiple solutions of H‐systems and Rellich's conjecture , 1984 .

[28]  A. Alexandrov A characteristic property of spheres , 1962 .

[29]  R. Courant,et al.  Methods of Mathematical Physics , 1962 .

[30]  Dr. M. G. Worster Methods of Mathematical Physics , 1947, Nature.

[31]  Ch. Delaunay,et al.  Sur la surface de révolution dont la courbure moyenne est constante. , 1841 .