Quick Simulation: A Review of Importance Sampling Techniques in Communications Systems

Importance sampling (IS) is a simulation technique which aims to reduce the variance (or other cost function) of a given simulation estimator. In communication systems, this usually, but not always, means attempting to reduce the variance of the bit error rate (BER) estimator. By reducing the variance, IS estimators can achieve a given precision from shorter simulation runs; hence the term "quick simulation." The idea behind IS is that certain values of the input random variables in a simulation have more impact on the parameter being estimated than others. If these "important" values are emphasized by sampling more frequently, then the estimator variance can be reduced. Hence, the basic methodology in IS is to choose a distribution which encourages the important values. This use of a "biased" distribution will, of course, result in a biased estimator if applied directly in the simulation. However, there is a simple procedure whereby the simulation outputs are weighted to correct for the use of the biased distribution, and this ensures that the new IS estimator is unbiased. Hence, the "art" of designing quick simulations via IS is entirely dependent on the choice of biased distribution. Over the last 50 years, IS techniques have flourished, but it is only in the last decade that coherent design methods have emerged. The outcome of these developments is that at the expense of increasing technical content, modern techniques can offer substantial run-time saving for a very broad range of problems. We present a comprehensive history and survey of IS methods. In addition, we offer a guide to the strengths and weaknesses of the techniques, and hence indicate which techniques are suitable for various types of communications systems. We stress that simple approaches can still yield useful savings, and so the simulation practitioner as well as the technical researcher should consider IS as a possible simulation tool.

[1]  H. Kahn Random sampling (Monte Carlo) techniques in neutron attenuation problems--II. , 1950, Nucleonics.

[2]  H. Kahn,et al.  Methods of Reducing Sample Size in Monte Carlo Computations , 1953, Oper. Res..

[3]  J. Hammersley,et al.  Monte Carlo Methods , 1965 .

[4]  D. Siegmund Importance Sampling in the Monte Carlo Study of Sequential Tests , 1976 .

[5]  P. Balaban,et al.  Statistical evaluation of the error rate of the fiberguide repeater using importance sampling , 1976, The Bell System Technical Journal.

[6]  J. Gärtner On Large Deviations from the Invariant Measure , 1977 .

[7]  J.P.C. Kleijnen,et al.  Importance sampling in systems simulation : A practical failure? , 1979 .

[8]  P. Balaban,et al.  A Modified Monte-Carlo Simulation Technique for the Evaluation of Error Rate in Digital Communication Systems , 1980, IEEE Trans. Commun..

[9]  R.L. Mitchell Importance Sampling Applied to Simulation of False Alarm Statistics , 1981, IEEE Transactions on Aerospace and Electronic Systems.

[10]  Averill M. Law,et al.  Simulation Modeling and Analysis , 1982 .

[11]  P. Ney Dominating Points and the Asymptotics of Large Deviations for Random Walk on $\mathbb{R}^d$ , 1983 .

[12]  G. W. Lank Theoretical aspects of importance sampling applied to false alarms , 1983, IEEE Trans. Inf. Theory.

[13]  Marie Cottrell,et al.  Large deviations and rare events in the study of stochastic algorithms , 1983 .

[14]  Michel C. Jeruchim,et al.  Techniques for Estimating the Bit Error Rate in the Simulation of Digital Communication Systems , 1984, IEEE J. Sel. Areas Commun..

[15]  James R. Wilson Variance Reduction Techniques for Digital Simulation , 1984 .

[16]  B L Nelson,et al.  Decomposition of Some Well-Known Variance Reduction Techniques. Revision. , 1985 .

[17]  R. Ellis,et al.  Entropy, large deviations, and statistical mechanics , 1985 .

[18]  Bruce R. Davis An Improved Importance Sampling Method for Digital Communication System Simulations , 1986, IEEE Trans. Commun..

[19]  K. Murthy,et al.  Analytical Results of Variance Reduction Characteristics of Biased Monte Carlo for Deep-Penetration Problems , 1986 .

[20]  Qiang Wang,et al.  On the Application of Importance Sampling to BER Estimation in the Simulation of Digital Communication Systems , 1987, IEEE Trans. Commun..

[21]  Michel C. Jeruchim,et al.  Developments in the Theory and Application of Importance Sampling , 1987, IEEE Trans. Commun..

[22]  Keshab K. Parhi,et al.  On optimizing importance sampling simulations , 1987 .

[23]  Brian D. Ripley,et al.  Stochastic Simulation , 2005 .

[24]  Philip Heidelberger,et al.  Measure specific dynamic importance sampling for availability simulations , 1987, WSC '87.

[25]  Nitin R. Patel,et al.  Importance Sampling for Estimating Exact Probabilities in Permutational Inference , 1988 .

[26]  Giovanni Vannucci,et al.  Characterizing filtered light waves corrupted by phase noise , 1988, IEEE Trans. Inf. Theory.

[27]  M. A. Herro,et al.  Simulated Viterbi decoding using importance sampling , 1988 .

[28]  C. Bucher Adaptive sampling — an iterative fast Monte Carlo procedure , 1988 .

[29]  Kung Yao,et al.  Improved importance sampling technique for efficient simulation of digital communication systems , 1988, IEEE J. Sel. Areas Commun..

[30]  Michel C. Jeruchim,et al.  An experimental investigation of conventional and efficient importance sampling , 1989, IEEE Trans. Commun..

[31]  Donald L. Iglehart,et al.  Importance sampling for stochastic simulations , 1989 .

[32]  Jean Walrand,et al.  A quick simulation method for excessive backlogs in networks of queues , 1989 .

[33]  Michel C. Jeruchim,et al.  On optimum and suboptimum biasing procedures for importance sampling in communication simulation , 1990, IEEE Trans. Commun..

[34]  C. Cornell,et al.  Adaptive Importance Sampling , 1990 .

[35]  N.C. Beaulieu A composite importance sampling technique for digital communication system simulation , 1990, IEEE Trans. Commun..

[36]  James A. Bucklew,et al.  Large Deviation Techniques in Decision, Simulation, and Estimation , 1990 .

[37]  M. Shafi,et al.  Some improvements to conventional importance sampling techniques for coded systems using viterbi decoding , 1990 .

[38]  J.S. Sadowsky,et al.  On large deviations theory and asymptotically efficient Monte Carlo estimation , 1990, IEEE Trans. Inf. Theory.

[39]  John S. Sadowsky,et al.  A new method for Viterbi decoder simulation using importance sampling , 1990, IEEE Trans. Commun..

[40]  R. Melchers Search-based importance sampling , 1990 .

[41]  Norman C. Beaulieu An investigation of Gaussian tail and Rayleigh tail density functions for importance sampling digital communication system simulation , 1990, IEEE Trans. Commun..

[42]  P. Ney,et al.  Monte Carlo simulation and large deviations theory for uniformly recurrent Markov chains , 1990, Journal of Applied Probability.

[43]  Mansoor Shafi,et al.  Trellis-coded modulation on digital microwave radio systems-simulations for multipath fading channels , 1991, IEEE Trans. Commun..

[44]  J. S. Sadowsky,et al.  Direct-sequence spread-spectrum multiple-access communications with random signature sequences: A large deviations analysis , 1991, IEEE Trans. Inf. Theory.

[45]  Behnaam Aazhang,et al.  Constrained solutions in importance sampling via robust statistics , 1991, IEEE Trans. Inf. Theory.

[46]  Yaacob Ibrahim An Adaptive Importance Sampling Strategy , 1991 .

[47]  J. Sadowsky Large deviations theory and efficient simulation of excessive backlogs in a GI/GI/m queue , 1991 .

[48]  D. Lu,et al.  Estimation variance bounds of importance sampling simulations in digital communication systems , 1991, IEEE Trans. Commun..

[49]  T. Lehtonen,et al.  SIMULATING LEVEL-CROSSING PROBABILITIES BY IMPORTANCE SAMPLING , 1992 .

[50]  Man-Suk Oh,et al.  Adaptive importance sampling in monte carlo integration , 1992 .

[51]  K. Sam Shanmugan,et al.  Simulation of Communication Systems , 1992 .

[52]  Khaled Ben Letaief,et al.  Computing bit-error probabilities for avalanche photodiode receivers by large deviations theory , 1992, IEEE Trans. Inf. Theory.

[53]  K. Letaief,et al.  Computing the performance of Fano and stack decoders using importance sampling , 1992 .

[54]  Behnaam Aazhang,et al.  Efficient importance sampling techniques for simulation of multiuser communication systems , 1992, IEEE Trans. Commun..

[55]  John S. Sadowsky,et al.  On the optimality and stability of exponential twisting in Monte Carlo estimation , 1993, IEEE Trans. Inf. Theory.

[56]  Sumit Roy,et al.  Adaptive Importance Sampling , 1993, IEEE J. Sel. Areas Commun..

[57]  Michael Devetsikiotis,et al.  Importance Sampling Methodologies for Simulation of Communication Systems with Time-Varying Channels and Adaptive Equalizers , 1993, IEEE J. Sel. Areas Commun..

[58]  Michael Devetsikiotis,et al.  An algorithmic approach to the optimization of importance sampling parameters in digital communication system simulation , 1993, IEEE Trans. Commun..

[59]  Chung-Chin Lu,et al.  Using Weibull density function in importance sampling for digital communication system simulation , 1993 .

[60]  John S. Sadowsky,et al.  On Importance Sampling in Digital Communications - Part II: Trellis-Coded Modulation , 1993, IEEE J. Sel. Areas Commun..

[61]  Jie Wang,et al.  Asymptotically optimal importance sampling for product-form queuing networks , 1993, TOMC.

[62]  James A. Bucklew,et al.  Quick simulation of detector error probabilities in the presence of memory and nonlinearity , 1993, IEEE Trans. Commun..

[63]  Kung Yao,et al.  On Importance Sampling in Digital Communications - Part I: Fundamentals , 1993, IEEE J. Sel. Areas Commun..

[64]  S. Bellini,et al.  Efficient simulation of multilevel and coded transmission systems , 1993 .

[65]  N. C. Beaulieu,et al.  Sample rejection and importance sampling in the simulation of multidimensional signalling systems , 1993 .

[66]  Geoffrey C. Orsak A note on estimating false alarm rates via importance sampling , 1993, IEEE Trans. Commun..

[67]  Heinz-Josef Schlebusch On the asymptotic efficiency of importance sampling techniques , 1993, IEEE Trans. Inf. Theory.

[68]  Peter J. Smith,et al.  Analysis methods for optical heterodyne DPSK receivers corrupted by laser phase noise , 1993 .

[69]  Michael Devetsikiotis,et al.  Statistical optimization of dynamic importance sampling parameters for efficient simulation of communication networks , 1993, TNET.

[70]  Ted Berman,et al.  An importance sampling analysis of a noninterleaved Viterbi decoder in an RFI environment , 1994, IEEE Trans. Commun..

[71]  Khurram Muhammad,et al.  An efficient new technique for accurate bit error probability estimation of ZJ decoders , 1995, IEEE Trans. Commun..

[72]  Sumit Roy,et al.  Importance sampling for detection of scale problems , 1995, IEEE Transactions on Communications.

[73]  Sigrún Andradóttir,et al.  On the Choice of Alternative Measures in Importance Sampling with Markov Chains , 1995, Oper. Res..

[74]  Steven L. Smith,et al.  A modified importance sampling scheme for the estimation of detection system performance , 1995, IEEE Trans. Commun..

[75]  Amir Dembo,et al.  Exponential rates for error probabilities in DMPSK systems , 1995, IEEE Trans. Commun..

[76]  B. Aazhang,et al.  Importance sampling for analysis of direct detection optical communication systems , 1995, IEEE Trans. Commun..

[77]  Michael Devetsikiotis,et al.  Stochastic gradient optimization of importance sampling for the efficient simulation of digital communication systems , 1995, IEEE Trans. Commun..

[78]  M. Shafi,et al.  An improved optical heterodyne DPSK receiver to combat laser phase noise , 1995 .

[79]  Lei Wei Efficiency of optimal conditional importance sampling , 1995 .

[80]  Khaled Ben Letaief,et al.  Performance analysis of digital lightwave systems using efficient computer simulation techniques , 1995, IEEE Trans. Commun..

[81]  T. Hesterberg,et al.  Weighted Average Importance Sampling and Defensive Mixture Distributions , 1995 .

[82]  Philip Heidelberger,et al.  Fast simulation of rare events in queueing and reliability models , 1993, TOMC.

[83]  Behnaam Aazhang,et al.  A Class of Optimum Improtance Sampling Strategies , 1995, Inf. Sci..

[84]  T. Sakai,et al.  Importance sampling for TCM scheme over non-Gaussian noise channel , 1995 .

[85]  Ronald A. Iltis A randomized bias technique for the importance sampling simulation of Bayesian equalizers , 1995, IEEE Trans. Commun..

[86]  Amir Dembo,et al.  Large Deviations Techniques and Applications , 1998 .