A novel technique for cardiac arrhythmia classification using spectral correlation and support vector machines

[1]  Manu Thomas,et al.  Automatic ECG arrhythmia classification using dual tree complex wavelet based features , 2015 .

[2]  M. Ataei,et al.  Heart diseases prediction based on ECG signals' classification using a genetic-fuzzy system and dynamical model of ECG signals , 2014, Biomed. Signal Process. Control..

[3]  H. Lilly Beaulah,et al.  A Wavelet Transform Based Feature Extraction and Classification of Cardiac Disorder , 2014, Journal of Medical Systems.

[4]  Samit Ari,et al.  ELECTROCARDIOGRAM BEAT CLASSIFICATION USING S-TRANSFORM BASED FEATURE SET , 2014 .

[5]  J. Ganga Devi,et al.  Classification of cardiac arrhythmias based on morphological and rhythmic features , 2014 .

[6]  A. Akan,et al.  Evaluation of bagging ensemble method with time-domain feature extraction for diagnosing of arrhythmia beats , 2014, Neural Computing and Applications.

[7]  Sanjay L. Nalbalwar,et al.  Feature elimination based random subspace ensembles learning for ECG arrhythmia diagnosis , 2013, Soft Computing.

[8]  U. Rajendra Acharya,et al.  Application of higher order spectra for accurate delineation of atrial arrhythmia , 2013, 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC).

[9]  Shing-Tai Pan,et al.  Heartbeat Recognition from ECG Signals Using Hidden Markov Model with Adaptive Features , 2013, 2013 14th ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing.

[10]  Chandan Chakraborty,et al.  Application of Higher Order cumulant Features for Cardiac Health Diagnosis using ECG signals , 2013, Int. J. Neural Syst..

[11]  Chandan Chakraborty,et al.  Cardiac decision making using higher order spectra , 2013, Biomed. Signal Process. Control..

[12]  Mehmet Korürek,et al.  A new ECG beat clustering method based on kernelized fuzzy c-means and hybrid ant colony optimization for continuous domains , 2012, Appl. Soft Comput..

[13]  Chandan Chakraborty,et al.  Application of principal component analysis to ECG signals for automated diagnosis of cardiac health , 2012, Expert Syst. Appl..

[14]  Jindong Tan,et al.  A Real-Time Cardiac Arrhythmia Classification System with Wearable Sensor Networks , 2012, Sensors.

[15]  Ali Ghaffari,et al.  ECG arrhythmia recognition via a neuro-SVM-KNN hybrid classifier with virtual QRS image-based geometrical features , 2012, Expert Syst. Appl..

[16]  Enzo Pasquale Scilingo,et al.  Robust multiple cardiac arrhythmia detection through bispectrum analysis , 2011, Expert Syst. Appl..

[17]  R. Kumar,et al.  Cardiac arrhythmias detection in an ECG beat signal using fast fourier transform and artificial neural network , 2011 .

[18]  Georgios B. Giannakis,et al.  Cyclostationary Signal Analysis , 2009 .

[19]  C. Chiou,et al.  Cardiac arrhythmia diagnosis method using linear discriminant analysis on ECG signals , 2009 .

[20]  Wilfried N. Gansterer,et al.  On the Relationship Between Feature Selection and Classification Accuracy , 2008, FSDM.

[21]  Seyed Kamaledin Setarehdan,et al.  Support vector machine-based arrhythmia classification using reduced features of heart rate variability signal , 2008, Artif. Intell. Medicine.

[22]  Iñaki Inza,et al.  A review of feature selection techniques in bioinformatics , 2007, Bioinform..

[23]  Sung-Nien Yu,et al.  Electrocardiogram beat classification based on wavelet transformation and probabilistic neural network , 2007, Pattern Recognit. Lett..

[24]  Amjed S. Al-Fahoum,et al.  A quantitative analysis approach for cardiac arrhythmia classification using higher order spectral techniques , 2005, IEEE Transactions on Biomedical Engineering.

[25]  S. Sanei,et al.  Blind separation of convolutive mixtures of cyclostationary sources using an extended natural gradient method , 2003, Seventh International Symposium on Signal Processing and Its Applications, 2003. Proceedings..

[26]  Chih-Jen Lin,et al.  Errata to "A comparison of methods for multiclass support vector machines" , 2002, IEEE Trans. Neural Networks.

[27]  Chih-Jen Lin,et al.  A comparison of methods for multiclass support vector machines , 2002, IEEE Trans. Neural Networks.

[28]  G.B. Moody,et al.  The impact of the MIT-BIH Arrhythmia Database , 2001, IEEE Engineering in Medicine and Biology Magazine.

[29]  Carsten Peterson,et al.  Clustering ECG complexes using Hermite functions and self-organizing maps , 2000, IEEE Trans. Biomed. Eng..

[30]  Angus Fraser,et al.  Colonel Blood and Joseph Sell: Reassessing the George Borrow Canon , 1996 .

[31]  Malcolm s thaler,et al.  The Only EKG Book You'll Ever Need , 1988 .

[32]  William A. Gardner,et al.  Statistical spectral analysis : a nonprobabilistic theory , 1986 .

[33]  Tho Le-Ngoc,et al.  Cyclostationary Spectrum Sensing in Cognitive Radios at Low SNR Regimes , 2015 .

[34]  Che Wun Chiou,et al.  Analyzing ECG for cardiac arrhythmia using cluster analysis , 2012, Expert Syst. Appl..

[35]  Malcolm S. Thaler Comprar The Only Ekg Book You'll Ever Need 7th Ed. | Malcolm S. Thaler | 9781451119053 | Lippincott Williams & Wilkins , 2012 .

[36]  Yun-Chi Yeh,et al.  Heartbeat Case Determination Using Fuzzy Logic Method on ECG Signals , 2009 .

[37]  Minghe Xu Survey on dimension reduction techniques , 2006 .

[38]  B. K. Panigrahi,et al.  Power electronics and renewable energy systems , 2000, 2000 Power Engineering Society Summer Meeting (Cat. No.00CH37134).

[39]  William A. Gardner,et al.  Cyclostationarity in communications and signal processing , 1994 .

[40]  Jan J. Gerbrands,et al.  On the relationships between SVD, KLT and PCA , 1981, Pattern Recognit..

[41]  N. Otsu A Threshold Selection Method from Gray-Level Histograms , 1979, IEEE Trans. Syst. Man Cybern..

[42]  David G. Stork,et al.  Pattern Classification , 1973 .