Requirement for quantum computation

Abstract We identify ‘proper quantum computation’ with computational processes that cannot be efficiently simulated on a classical computer. For optical quantum computation, we establish no-go theorems for classes of quantum optical experiments that cannot yield proper quantum computation, and we identify requirements for optical proper quantum computation that correspond to violations of assumptions underpinning the no-go theorems.

[1]  H. Weinfurter,et al.  Experimental quantum teleportation , 1997, Nature.

[2]  B. Sanders,et al.  How to share a continuous-variable quantum secret by optical interferometry , 2001, quant-ph/0107074.

[3]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.

[4]  J. Preskill,et al.  Encoding a qubit in an oscillator , 2000, quant-ph/0008040.

[5]  Y. Yamamoto,et al.  Triggered single photons from a quantum dot. , 2001, Physical review letters.

[6]  Seth Lloyd,et al.  Quantum Computation over Continuous Variables , 1999 .

[7]  Göran Lindblad,et al.  Cloning the quantum oscillator , 2000 .

[8]  Chuang,et al.  Simple quantum computer. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[9]  Lov K. Grover Quantum Mechanics Helps in Searching for a Needle in a Haystack , 1997, quant-ph/9706033.

[10]  R. Feynman Simulating physics with computers , 1999 .

[11]  Kae Nemoto,et al.  Efficient classical simulation of continuous variable quantum information processes. , 2002, Physical review letters.

[12]  William J Munro,et al.  Quantum teleportation of optical quantum gates. , 2003, Physical review letters.

[13]  Barry C Sanders,et al.  Efficient classical simulation of optical quantum information circuits. , 2002, Physical review letters.

[14]  N. J. Cerf,et al.  Optical simulation of quantum logic , 1998 .

[15]  Kimble,et al.  Unconditional quantum teleportation , 1998, Science.

[16]  Samuel L. Braunstein,et al.  Detection devices in entanglement-based optical state preparation , 2001 .

[17]  W. P. Bowen,et al.  Continuous variable (2, 3) threshold quantum secret sharing schemes , 2003 .

[18]  Markus Aspelmeyer,et al.  Experimental realization of freely propagating teleported qubits , 2003, Nature.

[19]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[20]  R. Blume-Kohout,et al.  Climbing Mount Scalable: Physical Resource Requirements for a Scalable Quantum Computer , 2002, quant-ph/0204157.

[21]  Barry C. Sanders,et al.  Universal continuous-variable quantum computation: Requirement of optical nonlinearity for photon counting , 2002 .