Electrical performance and scalability of Pt dispersed SiO2 nanometallic resistance switch.

Highly reproducible bipolar resistance switching was recently demonstrated in a composite material of Pt nanoparticles dispersed in silicon dioxide. Here, we examine the electrical performance and scalability of this system and demonstrate devices with ultrafast (<100 ps) switching, long state retention (no measurable relaxation after 6 months), and high endurance (>3 × 10(7) cycles). A possible switching mechanism based on ion motion in the film is discussed based on these observations.

[1]  J. Simmons,et al.  New conduction and reversible memory phenomena in thin insulating films , 1967, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[2]  C. A. Murray,et al.  Scaling Theory of Localization: Absence of Quantum Diffusion in Two Dimensions , 1979 .

[3]  D. Bremaud,et al.  Electrical current distribution across a metal–insulator–metal structure during bistable switching , 2001, cond-mat/0104452.

[4]  Tx,et al.  Field-driven hysteretic and reversible resistive switch at the Ag–Pr0.7Ca0.3MnO3 interface , 2002, cond-mat/0212464.

[5]  A. Sawa,et al.  Hysteretic current–voltage characteristics and resistance switching at a rectifying Ti∕Pr0.7Ca0.3MnO3 interface , 2004, cond-mat/0409657.

[6]  S. Seo,et al.  Reproducible resistance switching in polycrystalline NiO films , 2004 .

[7]  M. Kozicki,et al.  Nanoscale memory elements based on solid-state electrolytes , 2005, IEEE Transactions on Nanotechnology.

[8]  Byung Joon Choi,et al.  Resistive switching mechanism of TiO2 thin films grown by atomic-layer deposition , 2005 .

[9]  Michael N. Kozicki,et al.  A macro model of programmable metallization cell devices , 2005 .

[10]  R. Waser,et al.  Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3 , 2006, Nature materials.

[11]  R. Waser,et al.  Nanoionics-based resistive switching memories. , 2007, Nature materials.

[12]  M. Wuttig,et al.  Phase-change materials for rewriteable data storage. , 2007, Nature materials.

[13]  A. Sawa Resistive switching in transition metal oxides , 2008 .

[14]  Kailash Gopalakrishnan,et al.  Overview of candidate device technologies for storage-class memory , 2008, IBM J. Res. Dev..

[15]  J. Yang,et al.  Memristive switching mechanism for metal/oxide/metal nanodevices. , 2008, Nature nanotechnology.

[16]  C. N. Lau,et al.  The mechanism of electroforming of metal oxide memristive switches , 2009, Nanotechnology.

[17]  Bart J. Kooi,et al.  Polarity-dependent resistance switching in GeSbTe phase-change thin films: The importance of excess Sb in filament formation , 2009 .

[18]  W. Lu,et al.  High-density Crossbar Arrays Based on a Si Memristive System , 2008 .

[19]  J. Yang,et al.  High switching endurance in TaOx memristive devices , 2010 .

[20]  Benoit Corraze,et al.  Electric-field-induced resistive switching in a family of mott insulators: Towards a new class of RRAM memories. , 2010, Advanced materials.

[21]  Jae Hyuck Jang,et al.  Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. , 2010, Nature nanotechnology.

[22]  K. Terabe,et al.  Forming and switching mechanisms of a cation-migration-based oxide resistive memory , 2010, Nanotechnology.

[23]  Rainer Waser,et al.  Voltage-time dilemma of pure electronic mechanisms in resistive switching memory cells , 2010 .

[24]  D. Ielmini,et al.  Phase change materials and their application to nonvolatile memories. , 2010, Chemical reviews.

[25]  Yuchao Yang,et al.  Bipolar resistive switching in Cu/AlN/Pt nonvolatile memory device , 2010 .

[26]  John Paul Strachan,et al.  Diffusion of Adhesion Layer Metals Controls Nanoscale Memristive Switching , 2010, Advanced materials.

[27]  R. Williams,et al.  Sub-nanosecond switching of a tantalum oxide memristor , 2011, Nanotechnology.

[28]  Shimeng Yu,et al.  Nanoscale Bipolar and Complementary Resistive Switching Memory Based on Amorphous Carbon , 2011, IEEE Transactions on Electron Devices.

[29]  Byung Joon Choi,et al.  Purely Electronic Switching with High Uniformity, Resistance Tunability, and Good Retention in Pt‐Dispersed SiO2 Thin Films for ReRAM , 2011, Advanced materials.

[30]  I-Wei Chen,et al.  A size-dependent nanoscale metal-insulator transition in random materials. , 2011, Nature nanotechnology.

[31]  Cheol Seong Hwang,et al.  A Resistive Memory in Semiconducting BiFeO3 Thin‐Film Capacitors , 2011, Advanced materials.

[32]  Julie Grollier,et al.  Solid-state memories based on ferroelectric tunnel junctions. , 2012, Nature nanotechnology.

[33]  Kinam Kim,et al.  A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O(5-x)/TaO(2-x) bilayer structures. , 2011, Nature materials.

[34]  R. Dittmann,et al.  Origin of the Ultra‐nonlinear Switching Kinetics in Oxide‐Based Resistive Switches , 2011 .

[35]  Tae Geun Kim,et al.  Improved reliability of Au/Si3N4/Ti resistive switching memory cells due to a hydrogen postannealing treatment , 2011 .

[36]  James M. Tour,et al.  In situ imaging of the conducting filament in a silicon oxide resistive switch , 2012, Scientific reports.

[37]  Takhee Lee,et al.  Organic resistive nonvolatile memory materials , 2012 .

[38]  Yuchao Yang,et al.  Observation of conducting filament growth in nanoscale resistive memories , 2012, Nature Communications.

[39]  D. Strukov,et al.  Thermophoresis/diffusion as a plausible mechanism for unipolar resistive switching in metal–oxide–metal memristors , 2012, Applied Physics A.

[40]  D. Jeong,et al.  Emerging memories: resistive switching mechanisms and current status , 2012, Reports on progress in physics. Physical Society.

[41]  Doo Seok Jeong,et al.  Threshold resistive and capacitive switching behavior in binary amorphous GeSe , 2012 .

[42]  T. Hasegawa,et al.  Atomic Switch: Atom/Ion Movement Controlled Devices for Beyond Von‐Neumann Computers , 2012, Advanced materials.

[43]  Xiang Yang,et al.  Dynamic-Load-Enabled Ultra-low Power Multiple-State RRAM Devices , 2012, Scientific Reports.

[44]  Thomas Mikolajick,et al.  Metal oxide memories based on thermochemical and valence change mechanisms , 2012 .

[45]  Kate J. Norris,et al.  Nitride memristors , 2012 .

[46]  H. Ohno,et al.  Current-induced torques in magnetic materials. , 2012, Nature materials.

[47]  Frederick T. Chen,et al.  Formation polarity dependent improved resistive switching memory characteristics using nanoscale (1.3 nm) core-shell IrOx nano-dots , 2012, Nanoscale Research Letters.

[48]  Byung Joon Choi,et al.  A Parallel Circuit Model for Multi‐State Resistive‐Switching Random Access Memory , 2012 .

[49]  J Joshua Yang,et al.  Memristive devices for computing. , 2013, Nature nanotechnology.

[50]  Byung Joon Choi,et al.  Cause and prevention of moisture-induced degradation of resistance random access memory nanodevices. , 2013, ACS nano.