Symmetry-adapted perturbation theory utilizing density functional description of monomers for high-spin open-shell complexes.

We present an implementation of symmetry-adapted perturbation theory (SAPT) to interactions of high-spin open-shell monomers forming high-spin dimers. The monomer spin-orbitals used in the expressions for the electrostatic and exchange contributions to the interaction energy are obtained from density functional theory using a spin-restricted formulation of the open-shell Kohn-Sham (ROKS) method. The dispersion and induction energies are expressed through the density-density response functions predicted by the time-dependent ROKS theory. The method was applied to several systems: NH...He, CN...Ne, H2O...HO2, and NH...NH. It provides accuracy comparable to that of the best previously available methods such as the open-shell coupled-cluster method with single, double, and noniterative triple excitations, RCCSD(T), with a significantly reduced computational cost.

[1]  R. Podeszwa,et al.  Interactions in diatomic dimers involving closed-shell metals. , 2007, The journal of physical chemistry. A.

[2]  B. Rice,et al.  Potential energy surface for cyclotrimethylene trinitramine dimer from symmetry-adapted perturbation theory. , 2007, Physical chemistry chemical physics : PCCP.

[3]  K. Szalewicz,et al.  Pair potential for helium from symmetry-adapted perturbation theory calculations and from supermolecular data. , 2007, The Journal of chemical physics.

[4]  N. G. Almarza Computation of the free energy of solids. , 2007, The Journal of chemical physics.

[5]  R. Bartlett,et al.  Coupled-cluster theory in quantum chemistry , 2007 .

[6]  K. Szalewicz,et al.  Third-order interactions in symmetry-adapted perturbation theory. , 2006, The Journal of chemical physics.

[7]  P. Żuchowski,et al.  An ab initio investigation of the O(3P)–H2(1Σ+g) van der Waals well , 2006 .

[8]  Krzysztof Szalewicz,et al.  Potential energy surface for the benzene dimer and perturbational analysis of π-π interactions , 2006 .

[9]  G. Groenenboom,et al.  Interaction potential for water dimer from symmetry-adapted perturbation theory based on density functional description of monomers. , 2006, The Journal of chemical physics.

[10]  K. Szalewicz,et al.  Methane-water cross second virial coefficient with quantum corrections from an ab initio potential. , 2006, The Journal of chemical physics.

[11]  Y. Endo,et al.  The Rotational Spectrum of the Water-Hydroperoxy Radical (H2O-HO2) Complex , 2006, Science.

[12]  R. Podeszwa,et al.  Density-Fitting Method in Symmetry-Adapted Perturbation Theory Based on Kohn-Sham Description of Monomers , 2006, 2006 HPCMP Users Group Conference (HPCMP-UGC'06).

[13]  Krzysztof Szalewicz,et al.  Intermolecular potentials based on symmetry-adapted perturbation theory with dispersion energies from time-dependent density-functional calculations. , 2005, The Journal of chemical physics.

[14]  J. H. van Lenthe,et al.  Ab initio calculation of the NH(3sigma-)-NH(3sigma-) interaction potentials in the quintet, triplet, and singlet states. , 2005, The Journal of chemical physics.

[15]  Krzysztof Szalewicz,et al.  Efficient calculation of coupled Kohn-Sham dynamic susceptibility functions and dispersion energies with density fitting , 2005 .

[16]  Marta I. Hernández,et al.  The intermolecular potential of O2–O2 in its quintet state: An ab initio study , 2005 .

[17]  G. Groenenboom,et al.  Polarizabilities of Sc and Ti atoms and dispersion coefficients for their interaction with helium atoms , 2005 .

[18]  R. Podeszwa,et al.  Accurate interaction energies for argon, krypton, and benzene dimers from perturbation theory based on the Kohn–Sham model , 2005 .

[19]  Krzysztof Szalewicz,et al.  Symmetry-adapted perturbation-theory calculations of intermolecular forces employing density-functional description of monomers. , 2005, The Journal of chemical physics.

[20]  R. Krems,et al.  Interaction of NH(X 3Sigma-) with He: potential energy surface, bound states, and collisional Zeeman relaxation. , 2005, The Journal of chemical physics.

[21]  R. Krems Molecules near absolute zero and external field control of atomic and molecular dynamics , 2005, physics/0504156.

[22]  M. Schütz,et al.  Density-functional theory-symmetry-adapted intermolecular perturbation theory with density fitting: a new efficient method to study intermolecular interaction energies. , 2005, The Journal of chemical physics.

[23]  R. Krems,et al.  Editorial: Quo vadis, cold molecules? , 2004 .

[24]  M. Szczęśniak,et al.  Paradigm pre-reactive van der Waals complexes: X–HX and X–H2 (X = F, Cl, Br) , 2004 .

[25]  A. Dalgarno,et al.  Linear response time-dependent density functional theory for van der Waals coefficients. , 2004, The Journal of chemical physics.

[26]  Vladimír Lukes,et al.  On the structure and physical origin of the interaction between lithium and acetylene molecule , 2004 .

[27]  P. Soldán,et al.  Interaction of NH(X3Sigma-) molecules with rubidium atoms: implications for sympathetic cooling and the formation of extremely polar molecules. , 2003, Physical review letters.

[28]  B. Jeziorski,et al.  Convergence behavior of symmetry-adapted perturbation expansions for excited states. A model study of interactions involving a triplet helium atom , 2004 .

[29]  B. Jeziorski,et al.  Dispersion interaction of high-spin open-shell complexes in the random phase approximation , 2003 .

[30]  Paweł Sałek,et al.  Restricted density functional theory of linear time-dependent properties in open-shell molecules , 2003 .

[31]  Georg Jansen,et al.  Intermolecular dispersion energies from time-dependent density functional theory , 2003 .

[32]  S. Chu,et al.  Sensitive detection of cold cesium molecules formed on Feshbach resonances. , 2002, Physical review letters.

[33]  Konrad Patkowski,et al.  Symmetry-forcing procedure and convergence behavior of perturbation expansions for molecular interaction energies , 2002 .

[34]  Georg Jansen,et al.  Intermolecular induction and exchange-induction energies from coupled-perturbed Kohn–Sham density functional theory , 2002 .

[35]  Georg Jansen,et al.  First-order intermolecular interaction energies from Kohn–Sham orbitals , 2002 .

[36]  Krzysztof Szalewicz,et al.  Intermolecular forces from asymptotically corrected density functional description of monomers , 2002 .

[37]  S. Kais,et al.  Potential energy surface for the hydroperoxy and water (HO2·H2O) radical complex , 2002 .

[38]  C. Chabalowski,et al.  Reply to Comment on “Using Kohn−Sham Orbitals in Symmetry-Adapted Perturbation Theory To Investigate Intermolecular Interactions” , 2001 .

[39]  David J. Tozer,et al.  Hybrid exchange-correlation functional determined from thermochemical data and ab initio potentials , 2001 .

[40]  C. Chabalowski,et al.  Using Kohn−Sham Orbitals in Symmetry-Adapted Perturbation Theory to Investigate Intermolecular Interactions , 2001 .

[41]  K. Szalewicz,et al.  Symmetry-adapted perturbation theory with regularized Coulomb potential , 2001 .

[42]  B. Jeziorski,et al.  Convergence behavior of the symmetry-adapted perturbation theory for states submerged in Pauli forbidden continuum , 2001 .

[43]  G. Chałasiński,et al.  State of the Art and Challenges of the ab Initio Theory of Intermolecular Interactions. , 2000, Chemical reviews.

[44]  G. Groenenboom,et al.  Water pair potential of near spectroscopic accuracy. I. Analysis of potential surface and virial coefficients , 2000 .

[45]  J. S. Francisco,et al.  Radical-water complexes in Earth's atmosphere. , 2000, Accounts of chemical research.

[46]  P. Jankowski,et al.  On the optimal choice of monomer geometry in calculations of intermolecular interaction energies: Rovibrational spectrum of Ar–HF from two- and three-dimensional potentials , 2000 .

[47]  C. Williams,et al.  Molecules at Rest , 2000, Science.

[48]  Brett I. Dunlap,et al.  Robust and variational fitting , 2000 .

[49]  Benjamin T. Miller,et al.  A parallel implementation of the analytic nuclear gradient for time-dependent density functional theory within the Tamm–Dancoff approximation , 1999 .

[50]  Bian,et al.  van der waals interactions in the Cl + HD reaction , 1999, Science.

[51]  Piotr Jankowski,et al.  Unitary group based open-shell coupled cluster theory: Application to van der Waals interactions of high-spin systems , 1999 .

[52]  V. Barone,et al.  Toward reliable density functional methods without adjustable parameters: The PBE0 model , 1999 .

[53]  So Hirata,et al.  Time-dependent density functional theory for radicals: An improved description of excited states with substantial double excitation character , 1999 .

[54]  V. Aquilanti,et al.  Quantum interference scattering of aligned molecules: Bonding in O-4 and role of spin coupling , 1999 .

[55]  S. Shaik,et al.  Application of spin-restricted open-shell Kohn-Sham method to atomic and molecular multiplet states , 1999 .

[56]  N. Handy,et al.  Potential energy curves for PO, calculated using DFT and MRCI methodology , 1999 .

[57]  Nicholas C. Handy,et al.  Improving virtual Kohn-Sham orbitals and eigenvalues: Application to excitation energies and static polarizabilities , 1998 .

[58]  W. Lawrence,et al.  Spectroscopy and nonadiabatic predissociation of CN–Ne , 1997 .

[59]  M. Alexander,et al.  Adiabatic and diabatic potential-energy surfaces of the CN(X 2Σ+,A 2Π)Ne complex and nonadiabatic predissociation dynamics , 1997 .

[60]  T. Heijmen,et al.  Ab initio potential-energy surface and rotationally inelastic integral cross sections of the Ar–CH4 complex , 1997 .

[61]  D. P. Katz,et al.  Buffer-Gas Loading and Magnetic Trapping of Atomic Europium , 1997 .

[62]  Sl,et al.  Ab initio study of the He(1S)+CH(X 2Π) interaction , 1996 .

[63]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[64]  K. B. Davis,et al.  Bose-Einstein Condensation in a Gas of Sodium Atoms , 1995, EQEC'96. 1996 European Quantum Electronic Conference.

[65]  Sl,et al.  Partitioning of interaction energy in van der Waals complexes involving excited state species: The He(1S)+Cl2(B 3Πu) interaction , 1995 .

[66]  J. Paldus,et al.  Unitary group approach to spin‐adapted open‐shell coupled cluster theory , 1995 .

[67]  K. Szalewicz,et al.  On the effectiveness of monomer‐, dimer‐, and bond‐centered basis functions in calculations of intermolecular interaction energies , 1995 .

[68]  Bradley,et al.  Evidence of Bose-Einstein Condensation in an Atomic Gas with Attractive Interactions. , 1995, Physical review letters.

[69]  C. Wieman,et al.  Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor , 1995, Science.

[70]  A. van der Avoird,et al.  Ab initio potential energy surface and near‐infrared spectrum of the He–C2H2 complex , 1995 .

[71]  P. Csavinszky Comparison of determinantal inequalities for lower bounds to 〈1/r〉 , 1995 .

[72]  V. H. Smith,et al.  Evaluation of 〈S2〉 in restricted, unrestricted Hartree–Fock, and density functional based theories , 1995 .

[73]  Robert Moszynski,et al.  Perturbation Theory Approach to Intermolecular Potential Energy Surfaces of van der Waals Complexes , 1994 .

[74]  M. Dubernet,et al.  ATOM-MOLECULE VAN DER WAALS COMPLEXES CONTAINING OPEN-SHELL ATOMS. I: GENERAL THEORY AND BENDING LEVELS , 1994 .

[75]  K. Szalewicz,et al.  Many‐body theory of exchange effects in intermolecular interactions. Density matrix approach and applications to He–F−, He–HF, H2–HF, and Ar–H2 dimers , 1994 .

[76]  T. Russo,et al.  Density functional calculations on first‐row transition metals , 1994, chem-ph/9403005.

[77]  Ivan Hubač,et al.  Spin adapted restricted Hartree–Fock reference coupled cluster theory for open shell systems , 1994 .

[78]  David E. Woon,et al.  Gaussian basis sets for use in correlated molecular calculations. IV. Calculation of static electrical response properties , 1994 .

[79]  K. Szalewicz,et al.  Many‐body theory of exchange effects in intermolecular interactions. Second‐quantization approach and comparison with full configuration interaction results , 1994 .

[80]  Hans-Joachim Werner,et al.  Coupled cluster theory for high spin, open shell reference wave functions , 1993 .

[81]  P. Wormer,et al.  A van der Waals intermolecular potential for (O2)2 , 1993 .

[82]  K. Szalewicz,et al.  Symmetry-adapted perturbation theory calculation of the He-HF intermolecular potential energy surface , 1993 .

[83]  K. Szalewicz,et al.  On the convergence of the symmetrized Rayleigh-Schrödinger perturbation theory for molecular interaction energies , 1992 .

[84]  Nicholas C. Handy,et al.  Comparison and assessment of different forms of open shell perturbation theory , 1992 .

[85]  Fu-Ming Tao,et al.  Mo/ller–Plesset perturbation investigation of the He2 potential and the role of midbond basis functions , 1992 .

[86]  J. Rychlewski,et al.  Convergence properties and large-order behavior of the polarization expansion for the interaction energy of hydrogen atoms , 1992 .

[87]  T. Dunning,et al.  Electron affinities of the first‐row atoms revisited. Systematic basis sets and wave functions , 1992 .

[88]  Ernest R. Davidson,et al.  Perturbation theory for open shell systems , 1991 .

[89]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[90]  Jiří Čížek,et al.  Direct calculation of the Hartree–Fock interaction energy via exchange–perturbation expansion. The He … He interaction , 1987 .

[91]  P. Wormer,et al.  (Heisenberg) exchange and electrostatic interactions between O2 molecules: An ab initio study , 1984 .

[92]  G. Peinel,et al.  Coupled perturbation theory within the antisymmetrized product of separated geminals (APSG) framework , 1981 .

[93]  K. Szalewicz,et al.  Degenerate symmetry‐adapted perturbation theory. Convergence properties of perturbation expansions for excited states of H2+ ion , 1980 .

[94]  John R. Sabin,et al.  On some approximations in applications of Xα theory , 1979 .

[95]  K. Szalewicz,et al.  Symmetry forcing and convergence properties of perturbation expansions for molecular interaction energies , 1978 .

[96]  K. Szalewicz,et al.  On the convergence properties of the Rayleigh–Schrödinger and the Hirschfelder–Silbey perturbation expansions for molecular interaction energies , 1977 .

[97]  W. Kohn,et al.  Van der Waals interaction between an atom and a solid surface , 1976 .

[98]  L. Piela,et al.  First-order perturbation treatment of the short-range repulsion in a system of many closed-shell atoms or molecules , 1976 .

[99]  J. Hirschfelder Perturbation theory for exchange forces, II , 1967 .

[100]  H. C. Longuet-Higgins Spiers Memorial Lecture. Intermolecular forces , 1965 .