Glacial inception through rapid ice area increase driven by albedo and vegetation feedbacks

,

[1]  V. Brovkin,et al.  The Earth system model CLIMBER-X v1.0 – Part 2: The global carbon cycle , 2023, Geoscientific Model Development.

[2]  A. Ganopolski,et al.  Multistability and Transient Response of the Greenland Ice Sheet to Anthropogenic CO2 Emissions , 2023, Geophysical Research Letters.

[3]  A. Ganopolski,et al.  The Earth system model CLIMBER-X v1.0 – Part 1: Climate model description and validation​​​​​​​​​​​​​​ , 2022, Geoscientific Model Development.

[4]  B. Otto‐Bliesner,et al.  The importance of Canadian Arctic Archipelago gateways for glacial expansion in Scandinavia , 2022, Nature Geoscience.

[5]  C. Stokes,et al.  Evolution of the Laurentide and Innuitian ice sheets prior to the Last Glacial Maximum (115 ka to 25 ka) , 2021, Earth-Science Reviews.

[6]  V. Klemann,et al.  Glacial‐Isostatic Adjustment Models Using Geodynamically Constrained 3D Earth Structures , 2021, Geochemistry, Geophysics, Geosystems.

[7]  A. Quiquet,et al.  Climate and ice sheet evolutions from the last glacial maximum to the pre-industrial period with an ice-sheet–climate coupled model , 2021, Climate of the Past.

[8]  J. Hopper,et al.  Greenland Geothermal Heat Flow Database and Map (Version 1) , 2021, Earth System Science Data.

[9]  A. Berger,et al.  Insolation triggered abrupt weakening of Atlantic circulation at the end of interglacials , 2021, Science.

[10]  C. Dumas,et al.  Climate and ice sheet evolutions from the last glacial maximum to the pre-industrial period with an ice sheet – climate coupled model , 2021 .

[11]  L. Tarasov,et al.  Last glacial inception trajectories for the Northern Hemisphere from coupled ice and climate modelling , 2021, Climate of the Past.

[12]  G. Meehl,et al.  Quantifying Progress Across Different CMIP Phases With the ESMValTool , 2020, Journal of Geophysical Research: Atmospheres.

[13]  J. Gregory,et al.  Exploring the Drivers of Global and Local Sea‐Level Change Over the 21st Century and Beyond , 2020, Earth's Future.

[14]  P. Gierz,et al.  AMOC Recovery in a Multicentennial Scenario Using a Coupled Atmosphere‐Ocean‐Ice Sheet Model , 2020, Geophysical Research Letters.

[15]  J. Thepaut,et al.  The ERA5 global reanalysis , 2020, Quarterly Journal of the Royal Meteorological Society.

[16]  Chenwei Shen,et al.  Global surface air temperatures in CMIP6: historical performance and future changes , 2020, Environmental Research Letters.

[17]  G. Spada,et al.  SELEN4 (SELEN version 4.0): a Fortran program for solving the gravitationally and topographically self-consistent sea-level equation in glacial isostatic adjustment modeling , 2019 .

[18]  C. Ritz,et al.  Description and validation of the ice-sheet model Yelmo (version 1.0) , 2019, Geoscientific Model Development.

[19]  A. Manica,et al.  The configuration of Northern Hemisphere ice sheets through the Quaternary , 2019, Nature Communications.

[20]  F. Lucazeau,et al.  Analysis and Mapping of an Updated Terrestrial Heat Flow Data Set , 2019, Geochemistry, Geophysics, Geosystems.

[21]  Gerrit Lohmann,et al.  The sensitivity of Northern Hemisphere ice sheets to atmospheric forcing during the last glacial cycle using PMIP3 models , 2019, Journal of Glaciology.

[22]  V. Brovkin,et al.  Mid-Pleistocene transition in glacial cycles explained by declining CO2 and regolith removal , 2019, Science Advances.

[23]  M. Morlighem,et al.  Brief communication: PICOP, a new ocean melt parameterization under ice shelves combining PICO and a plume model , 2018, The Cryosphere.

[24]  V. Brovkin,et al.  Dynamic hydrological discharge modelling for coupled climate model simulations of the last glacial cycle: the MPI-DynamicHD model version 3.0 , 2018, Geoscientific Model Development.

[25]  A. Ganopolski,et al.  Simulation of the future sea level contribution of Greenland with a new glacial system model , 2018, The Cryosphere.

[26]  P. Gierz,et al.  Brief communication: An ice surface melt scheme including the diurnal cycle of solar radiation , 2018, The Cryosphere.

[27]  U. Mikolajewicz,et al.  Interactive ocean bathymetry and coastlines for simulating the last deglaciation with the Max Planck Institute Earth System Model (MPI-ESM-v1.2) , 2018, Geoscientific Model Development.

[28]  Volker Klemann,et al.  A benchmark study of numerical implementations of the sea level equation in GIA modelling , 2018, Geophysical Journal International.

[29]  V. Brovkin,et al.  Simulation of climate, ice sheets and CO 2 evolution during the last four glacial cycles with an Earth system model of intermediate complexity , 2017 .

[30]  A. Ganopolski,et al.  The importance of snow albedo for ice sheet evolution over the last glacial cycle , 2017, Climate of the Past.

[31]  R. Reese,et al.  Antarctic sub-shelf melt rates via PICO , 2017, The Cryosphere.

[32]  J. Schmitt,et al.  A 156 kyr smoothed history of the atmospheric greenhouse gases CO 2 , CH 4 , and N 2 O and their radiative forcing , 2017 .

[33]  E. Tziperman,et al.  Glacial Inception on Baffin Island: The Role of Insolation, Meteorology, and Topography , 2017 .

[34]  S. S. Kristensen,et al.  A global, high-resolution data set of ice sheet topography, cavity geometry, and ocean bathymetry , 2016 .

[35]  A. Ganopolski,et al.  Comparison of surface mass balance of ice sheets simulated by positive-degree-day method and energy balance approach , 2016 .

[36]  Michael Schulz,et al.  Comprehensive Earth system models of the last glacial cycle , 2016 .

[37]  R. Greve,et al.  Comparison of hybrid schemes for the combination of shallow approximations in numerical simulations of the Antarctic Ice Sheet , 2016 .

[38]  Ricarda Winkelmann,et al.  Critical insolation-CO2 relation for diagnosing past and future glacial inception , 2016, Nature.

[39]  A. Ganopolski,et al.  PALADYN v1.0, a comprehensive land surface–vegetation–carbon cycle model of intermediate complexity , 2016 .

[40]  C. Poulsen,et al.  Simulating the mid-Pleistocene transition through regolith removal , 2016 .

[41]  I. Sasgen,et al.  Potential of the solid-Earth response for limiting long-term West Antarctic Ice Sheet retreat in a warming climate , 2015 .

[42]  Ralf Greve,et al.  Comparison of thermodynamics solvers in the polythermal ice sheet model SICOPOLIS , 2015, 1506.02364.

[43]  L. Lisiecki,et al.  A Late Pleistocene sea level stack , 2014 .

[44]  S. Warren,et al.  Parameterizations for narrowband and broadband albedo of pure snow and snow containing mineral dust and black carbon , 2014 .

[45]  Z. Martinec,et al.  The rotational feedback on linear-momentum balance in glacial isostatic adjustment , 2014 .

[46]  Louis Bodmer ACKNOWLEDGEMENTS , 2013, Journal of Biosciences.

[47]  David Pollard,et al.  Description of a hybrid ice sheet-shelf model, and application to Antarctica , 2012 .

[48]  Jonathan M. Gregory,et al.  Modelling large-scale ice-sheet-climate interactions following glacial inception , 2012 .

[49]  J. Kay,et al.  True to Milankovitch: Glacial Inception in the New Community Climate System Model , 2012 .

[50]  J. Ettema,et al.  Significant contribution of insolation to Eemian melting of the Greenland ice sheet , 2011 .

[51]  W. Peltier,et al.  The impact of insolation, greenhouse gas forcing and ocean circulation changes on glacial inception , 2011 .

[52]  J. Kutzbach,et al.  The role of GCM resolution in simulating glacial inception , 2011 .

[53]  C. Poulsen,et al.  Terminating the Last Interglacial: The Role of Ice Sheet–Climate Feedbacks in a GCM Asynchronously Coupled to an Ice Sheet Model , 2011 .

[54]  M. Kageyama,et al.  Warm Nordic Seas delayed glacial inception in Scandinavia , 2010 .

[55]  A. Ganopolski,et al.  Multistability and critical thresholds of the Greenland ice sheet , 2010 .

[56]  A. Gardner,et al.  A review of snow and ice albedo and the development of a new physically based broadband albedo parameterization , 2010 .

[57]  H. Hellmer,et al.  A box model of circulation and melting in ice shelf caverns , 2010 .

[58]  M. Claussen,et al.  Simulation of the last glacial cycle with a coupled climate ice-sheet model of intermediate complexity , 2009 .

[59]  Alexander Robinson,et al.  An efficient regional energy-moisture balance model for simulation of the Greenland Ice Sheet response to climate change , 2009 .

[60]  G. Ramstein,et al.  Interactive comment on “Investigating the evolution of major Northern Hemisphere ice sheets during the last glacial-interglacial cycle” by S. Bonelli et al , 2009 .

[61]  Z. Martinec,et al.  Glacial isostasy and plate motion , 2008 .

[62]  David M. Holland,et al.  The Response of Ice Shelf Basal Melting to Variations in Ocean Temperature , 2008 .

[63]  J. V. D. Berg,et al.  A mass balance model for the Eurasian ice sheet for the last 120,000 years , 2008 .

[64]  Zong-Liang Yang,et al.  An observation-based formulation of snow cover fraction and its evaluation over large North American river basins , 2007 .

[65]  Jonathan L. Bamber,et al.  Impact of model physics on estimating the surface mass balance of the Greenland ice sheet , 2007 .

[66]  A. Abe‐Ouchi,et al.  Climatic Conditions for modelling the Northern Hemisphere ice sheets throughout the ice age cycle , 2007 .

[67]  J. Clark,et al.  On Postglacial Sea Level , 2007 .

[68]  M. Claussen,et al.  Climate Dynamics (2006) DOI 10.1007/s00382-006-0136-6 , 2005 .

[69]  Martin Funk,et al.  An enhanced temperature-index glacier melt model including the shortwave radiation balance: development and testing for Haut Glacier d'Arolla, Switzerland , 2005 .

[70]  A. Ganopolski,et al.  Multistability and hysteresis in the climate‐cryosphere system under orbital forcing , 2005 .

[71]  J. Mitrovica,et al.  On post-glacial sea level – II. Numerical formulation and comparative results on spherically symmetric models , 2005 .

[72]  M. Claussen,et al.  Transient simulation of the last glacial inception. Part I: glacial inception as a bifurcation in the climate system , 2005 .

[73]  V. Brovkin,et al.  Transient simulation of the last glacial inception. Part II: sensitivity and feedback analysis , 2005 .

[74]  Jacques Laskar,et al.  A long-term numerical solution for the insolation quantities of the Earth , 2004 .

[75]  C. Ritz,et al.  Quantifying ice‐sheet feedbacks during the last glacial inception , 2004 .

[76]  Gerrit Lohmann,et al.  Acceleration technique for Milankovitch type forcing in a coupled atmosphere-ocean circulation model: method and application for the Holocene , 2004 .

[77]  Katrin J. Meissner,et al.  The role of land surface dynamics in glacial inception: a study with the UVic Earth System Model , 2003 .

[78]  W. Peltier,et al.  Post-Eemian Glacial Inception. Part I: The Impact of Summer Seasonal Temperature Bias , 2003 .

[79]  M. Loutre,et al.  Transient simulations over the last interglacial period (126–115 kyr BP): feedback and forcing analysis , 2002 .

[80]  Martin Wild,et al.  A new snow cover fraction parametrization for the ECHAM4 GCM , 2001 .

[81]  G. Ramstein,et al.  Simulating the amplification of orbital forcing by ocean feedbacks in the last glaciation , 2001, Nature.

[82]  Z. Martinec Spectral–finite element approach to three‐dimensional viscoelastic relaxation in a spherical earth , 2000 .

[83]  W. Peltier,et al.  Impact of thermomechanical ice sheet coupling on a model of the 100 kyr ice age cycle , 1999 .

[84]  S. Vavrus The Response of the Coupled Arctic Sea Ice–Atmosphere System to Orbital Forcing and Ice Motion at 6 kyr and 115 kyr BP , 1999 .

[85]  W. Peltier,et al.  Terminating the 100 kyr ice age cycle , 1997 .

[86]  Ralf Greve,et al.  Application of a polythermal three-dimensional ice sheet model to the Greenland Ice Sheet : Response to steady-state and transient climate scenarios , 1997 .

[87]  Aurélie Botta,et al.  Possible role of atmosphere-biosphere interactions in triggering the last glaciation , 1996 .

[88]  P. Valdes,et al.  Sensitivity Studies of Northern Hemisphere Glaciation Using an Atmospheric General Circulation Model , 1995 .

[89]  S. Marshall,et al.  Coupled energy‐balance/ice‐sheet model simulations of the glacial cycle: A possible connection between terminations and terrigenous dust , 1995 .

[90]  Adrian Jenkins,et al.  A one-dimensional model of ice shelf-ocean interaction , 1991 .

[91]  L. Harvey Milankovitch forcing, vegetation feedback, and North Atlantic deep-water formation , 1989 .

[92]  M. Déqué,et al.  Orbital forcing of the inception of the Laurentide ice sheet? , 1983, Nature.

[93]  S. Warren,et al.  A Model for the Spectral Albedo of Snow. I: Pure Snow , 1980 .

[94]  S. Warren,et al.  A Model for the Spectral Albedo of Snow. II: Snow Containing Atmospheric Aerosols , 1980 .

[95]  P. Holland,et al.  Modeling Antarctic ice shelf basal melt patterns using the one-Layer Antarctic model for Dynamical Downscaling of Ice–ocean Exchanges (LADDIE v1.0) , 2022 .

[96]  J. Saiz,et al.  Right‐sided non‐recurrent laryngeal nerve without any vascular anomaly: an anatomical trap , 2021, ANZ journal of surgery.

[97]  U. Mikolajewicz,et al.  Analysis of the Surface Mass Balance for Deglacial Climate Simulations , 2020 .

[98]  G. Spada,et al.  SELEN4 (SELEN version 4.0): a Fortran program for solving the gravitationally and topographically self-consistent Sea Level Equation in Glacial Isostatic Adjustment modeling , 2019 .

[99]  D. Pollard A simple parameterization for ice sheet ablation rate ’ By , 2010 .

[100]  H. Goosse,et al.  A parameterization of ice shelf-ocean interaction for climate models , 2003 .

[101]  A. Weaver,et al.  On the causes of glacial inception at 116 kaBP , 2002 .

[102]  N. Reeh,et al.  Parameterization of melt rate and surface temperature on the Greenland ice sheet , 1989 .

[103]  R. Braithwaite,et al.  Calculation of degree-days for glacier-climate research , 1985 .