Distributed video data fusion and mining

This paper presents an event sensing paradigm for intelligent event-analysis in a wireless, ad hoc, multi-camera, video surveillance system. In particilar, we present statistical methods that we have developed to support three aspects of event sensing: 1) energy-efficient, resource-conserving, and robust sensor data fusion and analysis, 2) intelligent event modeling and recognition, and 3) rapid deployment, dynamic configuration, and continuous operation of the camera networks. We outline our preliminary results, and discuss future directions that research might take.

[1]  David Haussler,et al.  Exploiting Generative Models in Discriminative Classifiers , 1998, NIPS.

[2]  Fadi Dornaika,et al.  Object Pose: The Link between Weak Perspective, Paraperspective, and Full Perspective , 1997, International Journal of Computer Vision.

[3]  Olivier Faugeras,et al.  Three-Dimensional Computer Vision , 1993 .

[4]  Christopher J. C. Burges,et al.  Geometry and invariance in kernel based methods , 1999 .

[5]  Keinosuke Fukunaga,et al.  Introduction to Statistical Pattern Recognition , 1972 .

[6]  Teresa H. Y. Meng,et al.  Bits-per-joule capacity of energy-limited wireless ad hoc networks , 2002, Global Telecommunications Conference, 2002. GLOBECOM '02. IEEE.

[7]  Gang Xu,et al.  Epipolar Geometry in Stereo, Motion and Object Recognition , 1996, Computational Imaging and Vision.

[8]  Edward Y. Chang,et al.  First ACM SIGMM international workshop on Video surveillance , 2003 .

[9]  S. B. Needleman,et al.  A general method applicable to the search for similarities in the amino acid sequence of two proteins. , 1970, Journal of molecular biology.

[10]  Si Wu,et al.  Improving support vector machine classifiers by modifying kernel functions , 1999, Neural Networks.

[11]  Michael Stonebraker,et al.  Aurora: a data stream management system , 2003, SIGMOD '03.

[12]  Edward Y. Chang,et al.  Adaptive stream resource management using Kalman Filters , 2004, SIGMOD '04.

[13]  Hironobu Fujiyoshi,et al.  A System for Video Surveillance and Monitoring CMU VSAM Final Report , 1999 .

[14]  Zhengyou Zhang,et al.  A Flexible New Technique for Camera Calibration , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  Edward Y. Chang,et al.  Multi-camera spatio-temporal fusion and biased sequence-data learning for security surveillance , 2003, MULTIMEDIA '03.

[16]  Nello Cristianini,et al.  Learning the Kernel Matrix with Semidefinite Programming , 2002, J. Mach. Learn. Res..

[17]  Jennifer Widom,et al.  Adaptive filters for continuous queries over distributed data streams , 2003, SIGMOD '03.

[18]  Alexander J. Smola,et al.  Learning with kernels , 1998 .

[19]  Koby Crammer,et al.  Kernel Design Using Boosting , 2002, NIPS.

[20]  Yi Lin,et al.  Support Vector Machines for Classification in Nonstandard Situations , 2002, Machine Learning.

[21]  Nello Cristianini,et al.  Controlling the Sensitivity of Support Vector Machines , 1999 .

[22]  Teresa H. Meng,et al.  Minimum energy mobile wireless networks , 1998, ICC '98. 1998 IEEE International Conference on Communications. Conference Record. Affiliated with SUPERCOMM'98 (Cat. No.98CH36220).

[23]  Sunil Prabhakar,et al.  Evaluating probabilistic queries over imprecise data , 2003, SIGMOD '03.

[24]  Michael Stonebraker,et al.  Load Shedding on Data Streams , 2003 .

[25]  Jennifer Widom,et al.  STREAM: The Stanford Stream Data Manager , 2003, IEEE Data Eng. Bull..

[26]  Lukasz Golab,et al.  Issues in data stream management , 2003, SGMD.

[27]  Robert Grover Brown,et al.  Introduction to random signal analysis and Kalman filtering , 1983 .

[28]  Jennifer Widom,et al.  Models and issues in data stream systems , 2002, PODS.

[29]  Edward Y. Chang,et al.  Adaptive Feature-Space Conformal Transformation for Imbalanced-Data Learning , 2003, ICML.