Cheap Vision-Exploiting Ecological Niche and Morphology

In the course of evolutionary history, the visual system has evolved as part of a complete autonomous agent in the service of motor control. Therefore, the synthetic methodology investigates visual skills in the context of tasks a complete agent has to perform in a particular environment using autonomous mobile robots as modeling tools. We present a number of case studies in which certain vision-based behaviors in insects have been modeled with real robots, the snapshot model for landmark navigation, the average landmark vector model (ALV), a model of visual odometry, and the evolution of the morphology of an insect eye. From these case studies we devise a number of principles that characterize the concept of "cheap vision". It is concluded that--if ecological niche and morphology are properly taken into account--in many cases vision becomes much simpler.

[1]  M. Srinivasan,et al.  Reflective surfaces for panoramic imaging. , 1997, Applied optics.

[2]  R. Wehner,et al.  The polarization-vision project: championing organismic biology , 1994 .

[3]  Ralf Möller Visual Homing in Analog Hardware , 1999, Int. J. Neural Syst..

[4]  Hiroshi Kobayashi,et al.  An Autonomous Agent Navigating with a Polarized Light Compass , 1997, Adapt. Behav..

[5]  Dimitrios Lambrinos,et al.  Insect Strategies of Visual Homing in Mobile Robots , 1998 .

[6]  Ian Horswill Characterizing Adaptation by Constraint , 1992 .

[7]  Nicolas H. Franceschini,et al.  Towards UAV Nap-of-the-Earth Flight Using Optical Flow , 1999, ECAL.

[8]  Lukas Lichtensteiger Towards optimal sensor morphology for specific tasks: evolution of an artificial compound eye for estimating time to contact , 2000, SPIE Optics East.

[9]  W. Reichardt Movement perception in insects , 1969 .

[10]  Ian Horswill A simple, cheap, and robust visual navigation system , 1993 .

[11]  Fabrizio Mura,et al.  Visual control of altitude and speed in a flying agent , 1994 .

[12]  Bernhard Schölkopf,et al.  Where did I take that snapshot? Scene-based homing by image matching , 1998, Biological Cybernetics.

[13]  Rolf Pfeifer,et al.  Understanding intelligence , 2020, Inequality by Design.

[14]  Tony J. Prescott,et al.  Spatial Representation for Navigation in Animats , 1996, Adapt. Behav..

[15]  W. Vent,et al.  Rechenberg, Ingo, Evolutionsstrategie — Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. 170 S. mit 36 Abb. Frommann‐Holzboog‐Verlag. Stuttgart 1973. Broschiert , 1975 .

[16]  Ralf Möller,et al.  Insect visual homing strategies in a robot with analog processing , 2000, Biological Cybernetics.

[17]  Rolf Pfeifer,et al.  Design Principles of Autonomous Agents , 2001 .

[18]  P. Eggenberger,et al.  Evolving the morphology of a compound eye on a robot , 1999, 1999 Third European Workshop on Advanced Mobile Robots (Eurobot'99). Proceedings (Cat. No.99EX355).

[19]  Zhang,et al.  Visually mediated odometry in honeybees , 1997, The Journal of experimental biology.

[20]  Dimitrios Lambrinos,et al.  Landmark Navigation without Snapshots: the Average Landmark Vector Model , 1998 .

[21]  N. Franceschini,et al.  From insect vision to robot vision , 1992 .

[22]  Dario Floreano,et al.  From Animals to Animats 2: Proceedings of the Second International Conference on Simulation of Adaptive Behavior , 2000, Journal of Cognitive Neuroscience.

[23]  M V Srinivasan,et al.  Honeybee navigation: nature and calibration of the "odometer". , 2000, Science.

[24]  R. Wehner,et al.  Visual navigation in insects: coupling of egocentric and geocentric information , 1996, The Journal of experimental biology.

[25]  Takeo Kanade,et al.  A visual odometer for autonomous helicopter flight , 1999, Robotics Auton. Syst..

[26]  R. Pfeifer,et al.  A mobile robot employing insect strategies for navigation , 2000, Robotics Auton. Syst..

[27]  Fumiya Iida,et al.  Navigation in an autonomous flying robot by using a biologically inspired visual odometer , 2000, SPIE Optics East.

[28]  Rodney A. Brooks,et al.  Intelligence Without Reason , 1991, IJCAI.