Complete genome sequence of Neisseria meningitidis serogroup B strain MC58.

The 2,272,351-base pair genome of Neisseria meningitidis strain MC58 (serogroup B), a causative agent of meningitis and septicemia, contains 2158 predicted coding regions, 1158 (53.7%) of which were assigned a biological role. Three major islands of horizontal DNA transfer were identified; two of these contain genes encoding proteins involved in pathogenicity, and the third island contains coding sequences only for hypothetical proteins. Insights into the commensal and virulence behavior of N. meningitidis can be gleaned from the genome, in which sequences for structural proteins of the pilus are clustered and several coding regions unique to serogroup B capsular polysaccharide synthesis can be identified. Finally, N. meningitidis contains more genes that undergo phase variation than any pathogen studied to date, a mechanism that controls their expression and contributes to the evasion of the host immune system.

[1]  J. Venter,et al.  Identification of vaccine candidates against serogroup B meningococcus by whole-genome sequencing. , 2000, Science.

[2]  S. Salzberg,et al.  Genome sequence of the radioresistant bacterium Deinococcus radiodurans R1. , 1999, Science.

[3]  M. Achtman,et al.  The opcA and ΨopcB regions in Neisseria: genes, pseudogenes, deletions, insertion elements and DNA islands , 1999, Molecular microbiology.

[4]  I. Stojiljković,et al.  Iron acquisition systems in the pathogenic Neisseria , 1999, Molecular microbiology.

[5]  S. Salzberg,et al.  Evidence for lateral gene transfer between Archaea and Bacteria from genome sequence of Thermotoga maritima , 1999, Nature.

[6]  R. Vogel,et al.  Maltose metabolism of Lactobacillus sanfranciscensis: cloning and heterologous expression of the key enzymes, maltose phosphorylase and phosphoglucomutase. , 1998, FEMS microbiology letters.

[7]  E V Koonin,et al.  Chromosome 2 sequence of the human malaria parasite Plasmodium falciparum. , 1998, Science.

[8]  J. Fyfe,et al.  Neisseria gonorrhoeae contains multiple copies of a gene that may encode a site-specific recombinase and is associated with DNA rearrangements. , 1998, Gene.

[9]  S. Salzberg,et al.  Skewed oligomers and origins of replication. , 1998, Gene.

[10]  H. Ochman,et al.  Molecular archaeology of the Escherichia coli genome. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[11]  S. Salzberg,et al.  Complete genome sequence of Treponema pallidum, the syphilis spirochete. , 1998, Science.

[12]  J. Peden,et al.  Simple sequence repeats in the Helicobacter pylori genome , 1998, Molecular microbiology.

[13]  S. Karlin,et al.  Comparative DNA analysis across diverse genomes. , 1998, Annual review of genetics.

[14]  S. Salzberg,et al.  Microbial gene identification using interpolated Markov models. , 1998, Nucleic acids research.

[15]  S. Salzberg,et al.  Genomic sequence of a Lyme disease spirochaete, Borrelia burgdorferi , 1997, Nature.

[16]  R. Fleischmann,et al.  The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus , 1997, Nature.

[17]  Thomas L. Madden,et al.  Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. , 1997, Nucleic acids research.

[18]  P. Cao,et al.  High-level genetic diversity in the vapD chromosomal region of Helicobacter pylori , 1997, Journal of bacteriology.

[19]  H. Seifert,et al.  Analysis of protein binding to the Sma/Cla DNA repeat in pathogenic Neisseriae. , 1997, Nucleic acids research.

[20]  H. Ochman,et al.  Amelioration of Bacterial Genomes: Rates of Change and Exchange , 1997, Journal of Molecular Evolution.

[21]  J Hacker,et al.  Pathogenicity islands of virulent bacteria: structure, function and impact on microbial evolution , 1997, Molecular microbiology.

[22]  K. Sanderson,et al.  Highly plastic chromosomal organization in Salmonella typhi. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[23]  J. Lobry Asymmetric substitution patterns in the two DNA strands of bacteria. , 1996, Molecular biology and evolution.

[24]  M. Peakman,et al.  The influence of capsulation and lipooligosaccharide structure on neutrophil adhesion molecule expression and endothelial injury by Neisseria meningitidis. , 1996, The Journal of infectious diseases.

[25]  D. Hood,et al.  Molecular analysis of a locus for the biosynthesis and phase‐variable expression of the lacto‐N‐neotetraose terminal lipopolysaccharide structure in Neisseria meningitidis , 1995, Molecular microbiology.

[26]  R. Fleischmann,et al.  The Minimal Gene Complement of Mycoplasma genitalium , 1995, Science.

[27]  R. Fleischmann,et al.  Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. , 1995, Science.

[28]  Owen White,et al.  TIGR Assembler: A New Tool for Assembling Large Shotgun Sequencing Projects , 1995 .

[29]  E. Moxon,et al.  The effect of variations in the expression of pili on the interaction of Neisseria meningitidis with human nasopharyngeal epithelium. , 1995, The Journal of infectious diseases.

[30]  Manuel G. Claros,et al.  TopPred II: an improved software for membrane protein structure predictions , 1994, Comput. Appl. Biosci..

[31]  P. Sparling,et al.  Iron piracy: acquisition of transferrin‐bound iron by bacterial pathogens , 1994, Molecular microbiology.

[32]  L. Wainwright,et al.  A conserved DNA sequence is required for efficient gonococcal pilin antigenic variation , 1994, Molecular microbiology.

[33]  B. Poolman,et al.  Mechanism of maltose uptake and glucose excretion in Lactobacillus sanfrancisco , 1994, Journal of bacteriology.

[34]  M. Nowak,et al.  Adaptive evolution of highly mutable loci in pathogenic bacteria , 1994, Current Biology.

[35]  M. Riley,et al.  Functions of the gene products of Escherichia coli , 1993, Microbiological reviews.

[36]  P. Williams,et al.  Iron uptake mechanisms of pathogenic bacteria. , 1993, FEMS microbiology reviews.

[37]  J. Mcfadden,et al.  Identification and characterization of a novel insertion sequence, IS1106, downstream of the porA gene in B15 Neisseria meningitidis , 1992, Molecular microbiology.

[38]  E. Moxon,et al.  Insertion sequence IS1016 and absence of Haemophilus capsulation genes in the Brazilian purpuric fever clone of Haemophilus influenzae biogroup aegyptius , 1992, Infection and immunity.

[39]  T. Meyer,et al.  Silent pilin genes of Neisseria gonorrhoeae MS11 and the occurrence of related hypervariant sequences among other gonococcal isolates , 1992, Molecular microbiology.

[40]  R. Pinner,et al.  Evidence for functionally distinct pili expressed by Neisseria meningitidis , 1991, Infection and immunity.

[41]  D. Ferguson,et al.  The role of pili in the interactions of pathogenic Neisseria with cultured human endothelial cells , 1991, Molecular microbiology.

[42]  E. Moxon,et al.  The Haemophilus influenzae capsulation gene cluster: a compound transposon , 1991, Molecular microbiology.

[43]  K. Bousset,et al.  Evidence for a common molecular origin of the capsule gene loci in Gram‐negative bacteria expressing group II capsular polysaccharides , 1991, Molecular microbiology.

[44]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[45]  F. Rozsa,et al.  Identification, cloning, and sequencing of piv, a new gene involved in inverting the pilin genes of Moraxella lacunata , 1990, Journal of bacteriology.

[46]  T. Meyer,et al.  Molecular characterization and expression in Escherichia coli of the gene complex encoding the polysaccharide capsule of Neisseria meningitidis group B. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[47]  B. Anderson,et al.  Site-directed inhibition of Haemophilus influenzae malate dehydrogenase. , 1989, Journal of general microbiology.

[48]  S. Goodman,et al.  Identification and arrangement of the DNA sequence recognized in specific transformation of Neisseria gonorrhoeae. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[49]  J. Gray,et al.  Effects of chromosomal inversion on cell fitness in Escherichia coli K-12. , 1988, Genetics.

[50]  F. L. Macrina,et al.  Complete nucleotide sequence of insertion element IS4351 from Bacteroides fragilis , 1987, Journal of bacteriology.

[51]  A. Gamian,et al.  N-propionylated group B meningococcal polysaccharide mimics a unique epitope on group B Neisseria meningitidis , 1987, The Journal of experimental medicine.

[52]  F. F. Correia,et al.  A 26-base-pair repetitive sequence specific for Neisseria gonorrhoeae and Neisseria meningitidis genomic DNA , 1986, Journal of bacteriology.

[53]  T. Meyer,et al.  The repertoire of silent pilus genes in neisseria gonorrhoeae: Evidence for gene conversion , 1986, Cell.

[54]  M. Virji,et al.  Structural and antigenic differences between two types of meningococcal pili , 1984 .

[55]  J R Roth,et al.  Gene duplication in bacteria: alteration of gene dosage by sister-chromosome exchanges. , 1979, Cold Spring Harbor symposia on quantitative biology.

[56]  S. Morse,et al.  Effect of pH on the growth and glucose metabolism of Neisseria gonorrhoeae , 1978, Infection and immunity.

[57]  E. Holten Radiorespirometric studies in genus Neisseria. 3. The catabolism of pyruvate and acetate. , 2009, Acta pathologica et microbiologica Scandinavica. Section B, Microbiology.

[58]  M. Artenstein,et al.  HUMAN IMMUNITY TO THE MENINGOCOCCUS IV. IMMUNOGENICITY OF GROUP A AND GROUP C MENINGOCOCCAL POLYSACCHARIDES IN HUMAN VOLUNTEERS , 1969 .

[59]  M. Artenstein,et al.  HUMAN IMMUNITY TO THE MENINGOCOCCUS : III. PREPARATION AND IMMUNOCHEMICAL PROPERTIES OF THE GROUP A, GROUP B, AND GROUP C MENINGOCOCCAL POLYSACCHARIDES , 1969 .

[60]  J Cairns,et al.  Cold Spring Harbor Symposia. , 1968, Science.