Surface interpolation based on new local coordinates
暂无分享,去创建一个
[1] Bruce R. Piper. Properties of Local Coordinates Based on Dirichlet Tesselations , 1993, Geometric Modelling.
[2] R. Sibson. A vector identity for the Dirichlet tessellation , 1980, Mathematical Proceedings of the Cambridge Philosophical Society.
[3] Atsuyuki Okabe,et al. Spatial Tessellations: Concepts and Applications of Voronoi Diagrams , 1992, Wiley Series in Probability and Mathematical Statistics.
[4] Herbert Edelsbrunner,et al. Algorithms in Combinatorial Geometry , 1987, EATCS Monographs in Theoretical Computer Science.
[5] Daniel A. Griffith,et al. A STATISTICAL APPROACH TO THE PROBLEM OF MISSING SPATIAL DATA USING A FIRST‐ORDER MARKOV MODEL , 1984 .
[6] Gerald E. Farin,et al. Surfaces over Dirichlet tessellations , 1990, Comput. Aided Geom. Des..
[7] Gerald E. Farin,et al. A Transfinite Form of Sibson's Interpolant , 1999, Discret. Appl. Math..
[8] A. H. Thiessen. PRECIPITATION AVERAGES FOR LARGE AREAS , 1911 .
[9] M. Iri,et al. Construction of the Voronoi diagram for 'one million' generators in single-precision arithmetic , 1992, Proc. IEEE.
[10] Franz Aurenhammer,et al. Voronoi diagrams—a survey of a fundamental geometric data structure , 1991, CSUR.
[11] G. C. Shephard,et al. Convex Polytopes , 1969, The Mathematical Gazette.
[12] Kokichi Sugihara,et al. A robust Topology-Oriented Incremental algorithm for Voronoi diagrams , 1994, Int. J. Comput. Geom. Appl..
[13] M. Ehrgott,et al. Geometric methods to solve max-ordering location problems , 1999 .
[14] Robin Sibson,et al. The Dirichiet Tessellation as an Aid in Data Analysis , 1980 .