Surface interpolation based on new local coordinates

Abstract Sibson found a “local coordinate property” associated with the Voronoi diagram, and applied it to the surface interpolation from given heights at arbitrarily located sites. This article presents another local coordinate property that is also based on the Voronoi diagram. Our new property is simpler in that the coordinates can be computed from the Voronoi diagram directly while Sibson’s coordinates require the second-order Voronoi diagram. Moreover, our formula is flexible in the sense that it is valid even if the structure of the Voronoi diagram is incorrectly recognized. On the basis of this formula, a new interpolation scheme is constructed.

[1]  Bruce R. Piper Properties of Local Coordinates Based on Dirichlet Tesselations , 1993, Geometric Modelling.

[2]  R. Sibson A vector identity for the Dirichlet tessellation , 1980, Mathematical Proceedings of the Cambridge Philosophical Society.

[3]  Atsuyuki Okabe,et al.  Spatial Tessellations: Concepts and Applications of Voronoi Diagrams , 1992, Wiley Series in Probability and Mathematical Statistics.

[4]  Herbert Edelsbrunner,et al.  Algorithms in Combinatorial Geometry , 1987, EATCS Monographs in Theoretical Computer Science.

[5]  Daniel A. Griffith,et al.  A STATISTICAL APPROACH TO THE PROBLEM OF MISSING SPATIAL DATA USING A FIRST‐ORDER MARKOV MODEL , 1984 .

[6]  Gerald E. Farin,et al.  Surfaces over Dirichlet tessellations , 1990, Comput. Aided Geom. Des..

[7]  Gerald E. Farin,et al.  A Transfinite Form of Sibson's Interpolant , 1999, Discret. Appl. Math..

[8]  A. H. Thiessen PRECIPITATION AVERAGES FOR LARGE AREAS , 1911 .

[9]  M. Iri,et al.  Construction of the Voronoi diagram for 'one million' generators in single-precision arithmetic , 1992, Proc. IEEE.

[10]  Franz Aurenhammer,et al.  Voronoi diagrams—a survey of a fundamental geometric data structure , 1991, CSUR.

[11]  G. C. Shephard,et al.  Convex Polytopes , 1969, The Mathematical Gazette.

[12]  Kokichi Sugihara,et al.  A robust Topology-Oriented Incremental algorithm for Voronoi diagrams , 1994, Int. J. Comput. Geom. Appl..

[13]  M. Ehrgott,et al.  Geometric methods to solve max-ordering location problems , 1999 .

[14]  Robin Sibson,et al.  The Dirichiet Tessellation as an Aid in Data Analysis , 1980 .