Prime Decomposition of Zero Divisor Graph in a Commutative Ring

<jats:p>Let R be a commutative ring and let <jats:inline-formula> <math xmlns="http://www.w3.org/1998/Math/MathML" id="M1"> <mi mathvariant="normal">Γ</mi> <mfenced open="(" close=")" separators="|"> <mrow> <msub> <mrow> <mi>Z</mi> </mrow> <mrow> <mi>n</mi> </mrow> </msub> </mrow> </mfenced> </math> </jats:inline-formula> be the zero divisor graph of a commutative ring <jats:inline-formula> <math xmlns="http://www.w3.org/1998/Math/MathML" id="M2"> <mi>R</mi> </math> </jats:inline-formula>, whose vertices are nonzero zero divisors of <jats:inline-formula> <math xmlns="http://www.w3.org/1998/Math/MathML" id="M3"> <msub> <mrow> <mi>Z</mi> </mrow> <mrow> <mi>n</mi> </mrow> </msub> </math> </jats:inline-formula>, and such that the two vertices <jats:inline-formula> <math xmlns="http://www.w3.org/1998/Math/MathML" id="M4"> <mi>u</mi> <mo>,</mo> <mi>v</mi> </math> </jats:inline-formula> are adjacent if <jats:inline-formula> <math xmlns="http://www.w3.org/1998/Math/MathML" id="M5"> <mi>n</mi> </math> </jats:inline-formula> divides <jats:inline-formula> <math xmlns="http://www.w3.org/1998/Math/MathML" id="M6"> <mi>u</mi> <mi>v</mi> </math> </jats:inline-formula>. In this paper, we introduce the concept of prime decomposition of zero divisor graph in a commutative ring and also discuss some special cases of <jats:inline-formula> <math xmlns="http://www.w3.org/1998/Math/MathML" id="M7"> <mi mathvariant="normal">Γ</mi> <mfenced open="(" close=")" separators="|"> <mrow> <msub> <mrow> <mi>Z</mi> </mrow> <mrow> <mn>3</mn> <mi>p</mi> </mrow> </msub> </mrow> </mfenced> </math> </jats:inline-formula>, <jats:inline-formula> <math xmlns="http://www.w3.org/1998/Math/MathML" id="M8"> <mi mathvariant="normal">Γ</mi> <mfenced open="(" close=")" separators="|"> <mrow> <msub> <mrow> <mi>Z</mi> </mrow> <mrow> <mn>5</mn> <mi>p</mi> </mrow> </msub> </mrow> </mfenced> </math> </jats:inline-formula>, <jats:inline-formula> <math xmlns="http://www.w3.org/1998/Math/MathML" id="M9"> <mi>Γ</mi> <mfenced open="(" close=")" separators="|"> <mrow> <msub> <mrow> <mi>Z</mi> </mrow> <mrow> <mn>7</mn> <mi>p</mi> </mrow> </msub> </mrow> </mfenced> </math> </jats:inline-formula>, and <jats:inline-formula> <math xmlns="http://www.w3.org/1998/Math/MathML" id="M10"> <mi mathvariant="normal">Γ</mi> <mfenced open="(" close=")" separators="|"> <mrow> <msub> <mrow> <mi>Z</mi> </mrow> <mrow> <mi>p</mi> <mi>q</mi> </mrow> </msub> </mrow> </mfenced> </math> </jats:inline-formula>.</jats:p>