Discovering compact topical descriptors for web video retrieval
暂无分享,去创建一个
Tieniu Tan | Liang Wang | Fang Zhao | Yongzhen Huang | T. Tan | Yongzhen Huang | Liang Wang | F. Zhao
[1] G LoweDavid,et al. Distinctive Image Features from Scale-Invariant Keypoints , 2004 .
[2] Eric P. Xing,et al. Sparse Topical Coding , 2011, UAI.
[3] Honglak Lee,et al. Sparse deep belief net model for visual area V2 , 2007, NIPS.
[4] Michael Isard,et al. Object retrieval with large vocabularies and fast spatial matching , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.
[5] Geoffrey E. Hinton,et al. Replicated Softmax: an Undirected Topic Model , 2009, NIPS.
[6] Shih-Fu Chang,et al. Consumer video understanding: a benchmark database and an evaluation of human and machine performance , 2011, ICMR.
[7] Geoffrey E. Hinton,et al. Rectified Linear Units Improve Restricted Boltzmann Machines , 2010, ICML.
[8] Bernd Girod,et al. CHoG: Compressed histogram of gradients A low bit-rate feature descriptor , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.
[9] Wen Gao,et al. Towards compact topical descriptors , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.
[10] Ivan Laptev,et al. On Space-Time Interest Points , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.
[11] Geoffrey E. Hinton. Training Products of Experts by Minimizing Contrastive Divergence , 2002, Neural Computation.
[12] Andrew Zisserman,et al. Video Google: a text retrieval approach to object matching in videos , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.
[13] Michael I. Jordan,et al. Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..
[14] Cordelia Schmid,et al. Aggregating Local Image Descriptors into Compact Codes , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[15] Cordelia Schmid,et al. Compact Video Description for Copy Detection with Precise Temporal Alignment , 2010, ECCV.
[16] Beth Logan,et al. Mel Frequency Cepstral Coefficients for Music Modeling , 2000, ISMIR.